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ABSTRACT 

 

DISSOCIATING SIV ENV AND CD4: CONSEQUENCES FOR VIRUS AND HOST 

 

Adrienne E. Swanstrom 

 

       James A. Hoxie, M.D. 

 

 CD4 tropism is conserved among all primate lentiviruses and likely contributes to 

viral pathogenesis by targeting cells that are critical for the adaptive anti-viral immune 

responses. Although CD4-independent variants of HIV and SIV have been described that 

can utilize coreceptors CCR5 or CXCR4 in the absence of CD4, these viruses typically 

retain their CD4 binding sites and can still interact with CD4. In this thesis, I present the 

characterization and evaluation, both in vitro and in vivo, of a novel CD4-independent 

variant of SIV lacking a CD4 binding site. 

 I first describe the derivation of iMac239, a CD4-independent variant of 

SIVmac239. Like other CD4-independent variants, we found that a mutation in the 

V1/V2 loops of Env was required for CD4-independent entry, and that acquisition of 

CD4-independence resulted in an increase in neutralization sensitivity. While iMac239 

was CD4-independent, its CD4-binding site was intact, thus we removed the Aspartic 

Acid residue at position 385 (analogous to D-368 in HIV-1) to ablate CD4 binding. We 

found that this novel variant, iMac239-ΔD385, exhibited replication kinetics similar to 

that of the parental iMac239 strain, and was insensitive to neutralization by soluble CD4. 
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Both CD4-independent strains exhibited an expansion of cellular tropism in vitro with 

infection of CD4- CD8+ T cells in stimulated rhesus PBMCs. 

 Next, I present our evaluation of iMac239-ΔD385 pathogenesis and 

immunogenicity in four rhesus macaques. iMac239-ΔD385 replicated to a high acute 

viral peak, but was quickly controlled to undetectable levels by the host immune 

response. iMac239-ΔD385 infection elicited high and sustained neutralizing antibody 

titers and polyfunctional T cell responses. Strikingly, we observed an alteration in the 

distribution of infected cells in the lymph node and expansion in the types of cells 

infected. We tested iMac239-ΔD385 as a live attenuated vaccine against a pathogenic 

SIVsmE660, and while the number of animals in the study is too small to determine 

significance we observed a trend toward improved outcomes post challenge, potentially 

due to a synergistic interaction between iMac239-ΔD385 vaccination and Trim5α alleles. 
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Overview 

 In 30 years of the HIV-1/AIDS pandemic great advancements have been made in 

the management of infection and disease, from a diagnosis of HIV-1 infection serving as 

a death sentence in the 1980s to a chronic but manageable disease in the 2000s. The key 

factor in this improvement of clinical outcome has been the development of antiretroviral 

drugs, which, when taken properly, can decrease viral loads and significantly increase a 

person’s lifespan. While highly active antiretroviral therapy (HAART) can reduce viral 

loads to undetectable levels in an infected person, allowing the CD4+ T cell population to 

recover, the drugs are unable to clear the virus, and the patient’s immune system remains 

in a heightened state of activation. Comorbidities associated with chronic inflammation, 

coupled with the cost of drug regimens, access to care, and the requirement for strict 

adherence continue to be hurdles to long-term effective drug treatment in the global 

population (reviewed in (1)). 

Given the myriad problems associated with lifelong (and worldwide) HAART 

treatment, transmission will continue and the development of an HIV-1 vaccine continues 

to be the most promising solution to fully control the epidemic. Of the three antiviral 

immune responses, intrinsic, innate, and adaptive, inducing the latter has been the focus 

of the vaccine research field. Over a period of 28 years with 187 separate HIV vaccine 

trials (2), we have found that to develop a successful vaccine we must improve our 

understanding of pathogenesis along with correlates of protection and viral clearance, as 

well as identify immunogen(s) able to induce such responses. 

The invariant feature of CD4 tropism among HIV-1 strains results in the depletion 

of CD4+ T cells, which, in addition to their own effector functions, are critical for the 

2
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help they provide in establishing robust CD8+ T cell and B cell responses (reviewed in (3, 

4)). Thus, in almost every case of HIV-1 infection, the immune system is disabled and 

incapable of producing a controlling adaptive response. Additionally, disruption of T cell 

homeostasis is disrupted and this, coupled with microbial translocation and persistent 

exposure to viral antigen, causes a chronic generalized state of immune activation (5). 

Over time, the immune system collapses and the infected person becomes susceptible to a 

variety of opportunistic infections. The binding between HIV-1 and CD4, persistent 

replication, the loss of the target CD4 cell, and immune activation are intertwined in our 

understanding of pathogenesis. One strategy to address the relationship between loss of 

CD4 cells and pathogenesis is to dissociate the interaction between HIV-1 and CD4 to 

observe changes in viral tropism and how this impacts pathogenesis and the host immune 

system. In such a model, where CD4+ T cells are preserved, would pathogenesis be 

mitigated and would the immune system be able to control viral replication? 

The possibilities of anti-HIV-1 responses resulting from an intact host adaptive 

immune system are tantalizing and warrant further investigation. We hypothesize that 

infection in the absence of CD4 targeting will allow host immune responses to be elicited 

that are qualitatively and/or quantitatively superior to those that occur during pathogenic 

CD4-tropic infection, resulting in an overall improved clinical outcome. To test this 

hypothesis, we have derived a novel CD4-independent variant of simian 

immunodeficiency virus (SIV), characterized its virologic properties in vitro, and 

evaluated alterations in tropism, pathogenesis, and the host immune response in the 

rhesus macaque infection model. 

 

3
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Lentiviruses 

 HIV-1 is a member of the lentivirus genus of retroviruses and as a result of the 

HIV-1 epidemic lentiviruses have become one of the most researched groups of viruses. 

As their designation of “lenti” (meaning slow) implies, all of these viruses have long 

incubation periods prior to the appearance of disease. They are further characterized by 

their ability to persist in the presence of a multifaceted immune response while causing 

multi-organ disease and high rates of fatality. The genus of lentiviruses can be subdivided 

into two groups based on their cellular tropism within hosts. Equine infectious anemia 

virus (EIAV), bovine immunodeficiency virus (BIV) and the small ruminant lentiviruses 

(SRLVs, including ovine lentiviruses [maedi-visna] and the caprine lentiviruses [CAEV]) 

are all macrophage-tropic. The feline (FIV) and primate (including simian and human) 

lentiviruses replicate primarily in lymphocytes, though at least some strains can also 

replicate in macrophages (6, 7). The reason for this change in tropism between lentiviral 

groups, which is associated with a change in the number of receptors used for viral entry, 

has yet to be understood. What is clear, however, are the different disease manifestations 

of the two viral groups that are a consequence of their differing cell tropisms. 

 All members of the retrovirus family, including lentiviruses, contain four 

replicative genes gag, pro, pol, and env, which encode the virion structural proteins, 

protease, reverse transcriptase and integrase, and the surface glycoproteins, respectively. 

Beyond these four standard retroviral genes, lentiviruses also contain additional small 

open reading frames (ORFs) located between the pol and env genes, as well as exons 

contained within and at the 3’ end of the env gene that encode for regulatory proteins. 

4
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While there is little genetic conservation between the regulatory genes of the different 

lentiviruses, their functions are highly conserved. The primate lentiviruses contain the 

highest number of ORFs, including vif, vpu (vpx in HIV-2 and SIV), vpr, tat, rev, and nef. 

The other lentiviruses, FIV, BIV, EIAV, and SRLV typically encode fewer ORFs with 

orthologs for rev, tat, and vif most commonly conserved (8). 

 

Primate Lentiviruses 

 Thanks to technological advancements in the last 30 years, we have a clearer 

understanding of the origins of HIV and the evolutionary history of SIV. While SIV has 

been circulating in non-human primate populations for at least tens of thousands of years, 

HIV is a relatively new lentivirus in humans. Currently, natural SIV infection has only 

been observed in African monkeys and apes, suggesting its emergence after the 

divergence of the African and Asian Old World monkey lineages, approximately 6-10 

million years ago (9, 10). However, it should be noted that incomplete sampling of 

primate species worldwide for lentiviruses means that we may be underestimating their 

evolutionary lifespan. Given that SIV has evolved over (at least) tens of thousands of 

years it is not surprising that many species-specific strains have arisen and infect a wide 

variety of non-human primates (8, 9, 11). In almost all of these cases the primate species 

has coevolved with the lentiviral strain to tolerate chronic infection with minimal 

pathogenic consequences. Emerging evidence suggests that these “natural hosts” of SIV, 

experience high viral loads, but not the immune activation and disease progression seen 

with HIV and SIVmac infection. Natural hosts have, through various mechanisms, 

coevolved with their species-specific SIV strain in an attempt to protect their central 

5
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memory CD4+ T cell population (12–16). It is in instances of cross-species transmission 

of SIV that AIDS-like pathogenesis occurs. 

 Three cases of cross-species transmission are of special interest in considering the 

lineage of HIV-1. The first case is of the SIV strain infecting chimpanzees (SIVcpz). 

Molecular analysis of SIVcpz indicates that this strain is in fact a recombinant virus made 

up of genes from the SIVs of the red-capped mangabey and of the Cercopithecus species 

(greater spot nosed, mustached, and mona monkeys) (17). This cross-species 

transmission is likely the result of exposure to infected monkey blood during chimpanzee 

hunting of other species. While not initially appreciated, this recombinant virus is in fact 

pathogenic, resulting in increased risk of death, lower birth rates, significant CD4+ T cell 

loss, and AIDS-like pathologies in chimpanzees (18–20). Not all of the geographically 

differentiated subspecies of chimpanzee carry SIVcpz, rather it appears that the virus 

arose in the central subspecies (P.t. troglodytes) whose territory overlaps with those of 

red-capped mangabeys and monkeys of the Cercopithecus species, and then later spread 

to eastern chimpanzees (P.t. schweinfurthii) (21, 22). Surprisingly, recent work has also 

shown cross-species transmission events between central chimpanzees and western 

lowland gorillas, although it is not yet known whether SIVgor is pathogenic in its host 

(23, 24). 

 HIV lineages are also a consequence of cross-species transmission between 

various monkey and ape species and humans, likely as a result of exposure to infected 

primate blood or body fluids in the course of hunting for bush meat (25). There are two 

types of HIV, types 1 and 2, characterized by genetic and pathogenic differences. Within 

both types there are distinct lineages that are named by letter, and which are themselves 

6
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the result of independent cross-species transmissions. Group M of HIV-1 is the pandemic 

form of HIV, with all other HIV-1 and HIV-2 lineages being far less prevalent as well as 

geographically restricted. Phylogenic, statistical, and molecular epidemiological analyses 

of HIV-1 M strains and evolution rates have predicted the last common ancestor of group 

M occurred around 1910-1930 in colonial west central Africa, specifically in the area of 

Kinshasa (previously called Leopoldville) (26–30). It is well agreed that cross-species 

transmissions between non-human primates and humans occurred multiple times over the 

course of our history; however it is the unfortunate coincidence that HIV-1 group M 

emerged just as African human populations were transitioning from living in isolated 

villages to an increasingly urban and mobile lifestyle, thereby increasing the opportunity 

for human-to-human transmission. As HIV-1 group M spread around the world during 

the 1900s and early 2000s it further stratified through founder effects into nine subtypes 

(A-D, F-H, J, K) and more than 40 circulating recombinant forms which are concentrated 

in geographic regions (31). 

 The final case of cross-species transmission discussed here occurred accidentally 

at the California National Primate Research Center (CNPRC) in the 1970s. It is believed 

that a group of Asian rhesus macaques received tissues from naturally SIV-infected sooty 

mangabeys in the course of an attempt to develop a non-human primate model for prion 

disease (32). While the sooty mangabeys were natural hosts of their SIV strain (SIVsmm) 

and showed no signs of disease, the rhesus macaques experienced an outbreak of 

lymphoma. This outbreak was seen as an isolated event until the 1980s when researchers 

at the New England Primate Research Center (NEPRC) isolated the first SIV strain 

(SIVmac), recognized as the etiologic agent for a transmissible immunodeficiency 

7
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characterized by opportunistic infections and tumors (33). The origin of this virus was 

ultimately traced back to the CNPRC (34). The identification of SIV in the 1980s 

followed quickly on the discovery of HIV-1, and became the first animal model that 

could recapitulate the virologic and pathologic properties of HIV-1 in humans.  

Initial attempts at infecting monkeys and apes with HIV-1 failed (35), due to then 

unrecognized host-specific restriction factors (reviewed in (36). Once it was appreciated 

that Asian macaque lineages were susceptible to the SIV strains of African non-human 

primates, and that infection resulted in AIDS-like symptoms, SIVsmm-infected Asian 

macaques began to be used as a non-human primate model of HIV-1 infection. Due to 

certain differences between SIV and HIV-1, including coreceptor usage (37), diversity of 

SIV Env variants available (34), and susceptibility to inhibitors of various viral proteins 

(38), additional effort has been spent on developing HIV-1/SIV chimeric viruses. These 

chimeric viruses can be classified into two general groups, SIV strains with HIV genes 

(SHIVs) and HIV-1 strains that are adapted to replicate in macaques (stHIVs) (34, 39). 

While these viral tools are still under development, they are an important bridge between 

the SIV-based animal model and the HIV-1 infected human population. 

 

Virion Structure 

 The basic structure of retroviruses applies to lentiviruses as well: virions are 

enveloped, approximately 100 nm in diameter, and contain a Gag protein core 

surrounding two copies of viral RNA. The Gag protein is made as a precursor that is 

cleaved during virion assembly to give rise to the processed matrix/MA, capsid/CA, and 

nucleocapsid/NC proteins. The lentivirus core structure is distinguishable from other 

8
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retroviruses by its cylindrical shape, formed by the CA protein, with MA lining the inner 

face of the viral envelope membrane and NC in complex with the RNA (40). While the 

sizes of lentiviral proteins vary somewhat between viral species, the organization of 

protein domains and their roles in assembly are similar. The env gene of HIV and SIV 

encodes a 160 kDa protein that is glycosylated by host machinery, then proteolytically 

cleaved within the Golgi to form a heterodimer of gp120 and gp41 (41–43). These 

heterodimers of gp120 and gp41 assemble as trimers at the cell surface at sites of budding 

where gp120 acts as the extracellular cap and gp41 anchors into the membrane (44–47). 

Wild-type strains of HIV-1 and SIV generally have only 7-10 trimers per virion, though 

specific mutations, truncation of the gp41 cytoplasmic tail in particular, are known to 

greatly increase the expression of Env on the virion surface (48, 49). 

 Within gp120 and gp41 there are distinct regions of amino acids that may differ 

genetically but serve the same function in the course of entry. Gp120 contains five 

variable loops (V1-5) and five relatively conserved domains (C1-5). Each of the variable 

regions adopts a loop structure due to one or more disulfide bonds at the base of the loop. 

In the unbound trimer these loops lie at the surface with glycans pointing outwards 

creating a so-called “shield”. Gp41 contains a fusion peptide at its N terminus and two 

helical regions (HR) in the extracellular domain, all three of which are crucial for the 

final steps of viral entry into the target cell (50, 51). 

 Many features of the primate lentivirus Env protein structure have rendered it a 

difficult target for the host humoral response. First, the presence of the glycan shield 

thwarts the host immune response by presenting a dense pattern of host cell 

carbohydrates, which the immune response recognizes as self and consequently will not 
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naturally target. Second, the arrangement of the variable loops at the surface of the 

protein, which exhibit significant genetic variation between strains and rapid evolution 

within each host, means that the immune system must target a rapidly evolving antigen 

and frequently falls behind. Finally, the complex and sequential conformational changes 

that occur during the entry process (discussed in greater detail below) ensure that the 

conserved regions of Env, and those critical for coreceptor binding and entry, are only 

exposed once the primary receptor CD4 is bound and the virion is in close proximity to 

the cell surface, which limits antibody access to these sites by steric hindrance (50, 52–

56). 

 

Viral Entry 

 Attachment. The entry of HIV and SIV into a cell is a multistep process that 

requires a series of coordinated protein-protein interactions. The first phase is the 

attachment of the virion to the cell surface. Attachment can happen nonspecifically, 

through the interaction of Env with negatively charged cell surface heparin sulfate 

proteoglycans (57), or specifically via interaction with the attachment factors such as 

α4β7 (58, 59) or DC-SIGN (60, 61). By either mechanism, the virus is captured close to 

the cell surface, thereby increasing its chances of interacting with the receptors used for 

entry. It is important to note that while attachment factors can increase the efficiency of 

infection, they are not strictly required for viral entry.  

CD4 Binding. The first required step of viral infection is the binding of Env to its 

primary receptor, CD4 (62). CD4 is a member of the immunoglobin superfamily and 

serves as an enhancer of T-cell receptor mediated signaling. Binding occurs via 
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conserved sites within gp120, located in the C2, C3, and C4 domains. The key 

interactions for this binding involve Phe-43 and Arg-59 of CD4 and Asp-368, Glu-370, 

and Trp-427 of gp120 (63–65). Of note is the occurrence of a salt bridge between Arg-59 

of CD4 and Asp-368 in HIV (50). The existence of this salt bridge has not been proven 

yet in SIV, but given the high sequence conservation within the CD4 binding site and the 

loss of binding upon mutation of the concurrent Asp residue in SIV (at position 385), it is 

presumed to be present (66). Upon Env binding to CD4, a series of conformational 

changes occurs within the Env trimer, including a rearrangement of V1/V2, which results 

in exposure of V3. Concurrent with the movement of the variable loops, a four-stranded β 

sheet structure, termed the bridging sheet, forms. Both the V3 loop and the bridging sheet 

are critical for engagement of a secondary receptor, the coreceptor (63, 66).  

Coreceptor Binding. The third step in entry is the engagement of the viral 

coreceptor, CCR5 or CXCR4 for HIV-1. Both of these 7 transmembrane G-protein 

coupled chemokine receptors (GPCRs) are expressed on activated CD4+ T cells. Most 

transmitted/founder HIV-1 strains are CCR5-tropic (R5 viruses), with CXCR4 tropism 

(X4 viruses) developing later in infection as CD4+ CCR5+ T cells are depleted (67). 

Conversely, SIV strains are CCR5-tropic with little to no use of CXCR4; however, some 

natural host strains have evolved the ability to utilize alternative coreceptors as discussed 

below (68). 

Fusion. The final stage of viral entry is the fusion of the viral membrane with the 

cellular membrane, which is mediated by Env. Binding of the coreceptor induces 

additional conformational changes, which result in the exposure of the hydrophobic gp41 

fusion peptide, which then inserts itself into the cellular membrane. The fusion peptide of 

11



www.manaraa.com

each gp41 subunit in the trimer folds at a hinge region, bringing the two HR domains 

from each gp41 subunit together to form a six helix bundle (69, 70). The action of this 

bundle formation pulls the two membranes into close proximity with each other and 

allows for the formation of a fusion pore through which the virion contents can be 

delivered into the host cell cytoplasm (71). 

It has long been thought that the Env was a rigid structure in the unbound state and 

that the subsequent transitions through distinct conformational states coincided with large 

releases of energy resulting in the driving of Env into sequentially lower energy states, 

which cannot be reversed. Recent work, however, has suggested that the unbound Env 

trimer is much more dynamic and can sample at least three distinct prefusion 

conformations. The unbound trimer may exist in the stable ground-state configuration or 

spontaneously transition to transient CD4-bound or coreceptor-bound states. Different 

strains may sample each of these states at different rates. Additionally, specific mutations 

within Env are capable of driving the protein into a “dead-end” state in which one 

conformation is rigidly adopted and the subsequent conformational changes required for 

entry cannot be completed (72, 73). 

 

Diversity of Lentiviral Receptors 

 As described previously, HIV and SIV use a two-receptor system for engagement 

at the cell surface, with HIV utilizing CD4 and CCR5 and/or CXCR4 and SIV utilizing 

CD4 and primarily CCR5. However, it is important to note that certain strains of SIV are 

capable of using alternative coreceptors for entry. The alternative coreceptors shown to 

support SIV entry include the chemokine receptors CCR2, CCR3, CCR8, CXCR6, as 
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well as the GPCRs: GPR1, GPR15, and APJ (37, 74–83). While most of the work testing 

these receptors has occurred in cell culture, some key examples of alternative coreceptor 

usage in vivo have been reported (78, 83, 84). 

 As discussed earlier, the other mammalian lentiviruses can be divided into two 

groups based on the pathologies they cause, the types of cells they infect, and the number 

of receptors they use for entry. FIV is most similar to the primate lentiviruses in that it 

causes a decline in the number of CD4+ T cells and an acquired immune deficiency 

syndrome (AIDS) in cats, albeit at lower rates than HIV-1 causes in humans (85). Like 

HIV and SIV, FIV utilizes a two receptor system for entry and primarily infects CD4+ T 

cells and macrophages with expansion of tropism to B cells and CD8+ T cells later in 

infection (86–88).  Whereas the primary receptor for HIV and SIV is CD4, FIV engages 

CD134, a member of the tumor necrosis factor receptor (TNFR) family, as its primary 

receptor. After binding to CD134, the FIV Env then binds to the chemokine coreceptor 

CXCR4, similar to certain strains of HIV-1 (88–90). In cats, CD134 is primarily 

expressed on CD4+ T cells; however, expression analysis of the human and mouse 

orthologs suggests the presence of CD134 on activated CD8+ T cells, macrophages, and 

activated B cells (88, 91–93). 

 The other group of strictly macrophage-tropic lentiviruses has not received as 

much attention as HIV, SIV, and FIV, and thus efforts to identify cellular receptors used 

for viral entry have been varied. In the last ten years the receptor for EIAV was identified 

as Equine Lentivirus Receptor-1 (ELR1) (94), a protein that is related to TNFR proteins, 

similar to CD134 in felines. Conclusive data has not yet been published regarding the 

receptors for BIV or SLRVs. Wright et al. (95) hypothesize that CCR5 could serve as the 
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receptor for BIV based on their cell culture work showing a reduction in BIV infectivity 

in the presence of the CCR5 antagonists MIP-1α, MIP-1β, and RANTES. Recent work 

by Crespo, et al. (96, 97) has suggested that SRLVs utilize the mannose receptor for 

entry. While the receptors for these viruses have yet to be clearly identified, it is agreed 

that their primary cell target is the macrophage (6–8, 98). This specific tropism results in 

clear differences in disease course, the most obvious of which being that these 

macrophage-tropic strains do not cause immunodeficiency. These strains are most 

commonly considered “wasting diseases” in which animals can experience fever, 

lethargy, anorexia, neuropathies, and lymphadenopathy (7). 

Given the differing pathological consequences of these two subgroups of 

lentiviruses, which is directly related to their cellular tropism and method of cellular 

engagement, research into understanding the relationship between the virus and receptor 

and the consequences this relationship has for both virus and host will be critical to 

altering clinical outcomes. 

 

SIV As A Model 

 The HIV research field was greatly advanced in the 1980’s with the discovery that 

infection of rhesus macaques with an SIV from sooty mangabeys recapitulated the 

pathogenesis and progression to AIDS observed in humans infected with HIV-1. SIV 

strains used in Asian monkey models have been passaged through multiple animals and 

selected for specific pathogenic qualities. The prototypic and most often used strains in 

macaque research are SIVmac251 and SIVmac239. SIVmac251 was isolated as a swarm 

in a rhesus macaque at the NEPRC and the original swarm (SIVmac251_1991) has been 
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characterized as having 0.8% diversity (33, 99). Subsequently the SIVmac251 swarm was 

passaged through three other rhesus macaques from which the clone SIVmac239 was 

isolated (34). SIVmac239 is extremely well characterized as resulting in high viral loads 

(106-107 copies viral RNA/mL of plasma), causing 50% of infected animals to progress to 

fatal AIDS within a year (100). This viral clone is extremely neutralization resistant, 

CCR5-tropic, and CD4-dependent. It is considered a rigorous challenge stock to test 

vaccine candidates in macaques because of its virulence. While in vitro SIVmac239 does 

not infect macrophages, in vivo the virus evolves, and infection of macrophages has been 

observed. In certain cases this expansion of tropism affords the virus the ability to expand 

into other tissue compartments and can result in pathologies within the lung and brain of 

macaques. It is the characteristic of macrophage infection that originally identified the 

handful of CD4-independent viruses previously reported in the literature (101–106). The 

ability of these viruses to efficiently infect macrophages cell culture and in vivo is 

directly linked to the brain and lung lesions caused by these viruses. 

 In 2002 Puffer et al. (107) detailed an in vitro comparison between three 

macrophage-tropic SIV strains that are also capable of CD4-independent entry. The three 

independently generated strains, SIVmac316, SIVmac1A11, and SIVmac17E-Fr are all 

closely related to SIVmac239 genetically, but exhibit significant phenotypic differences 

associated with their altered tropism. 

 SIVmac316 was isolated from culture supernatants of alveolar macrophages taken 

by bronchoalveolar lavage from a rhesus macaque 168 days post infection with 

SIVmac239. The animal from which the strain was isolated had giant cell pneumonia and 

granulomatous encephalitis (108); both lesions are associated with infection of tissue 
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macrophages. In vitro evaluation of the SIVmac316 strain revealed it replicated quite 

well in primary and cultured macrophages, and that this tropism is driven by genetic 

determinants within env, as cloning of the SIVmac316 env into the SIVmac239 backbone 

recapitulated the phenotype of SIVmac316 (108).  Strikingly, while SIVmac316 was 

isolated from macrophage supernatants, when SIVmac316 was inoculated into rhesus 

macaques, infected macrophages and macrophage-associated pathologies were rarely 

observed (109). Thus, the SIVmac316 model serves as a cautionary tale of discrepancies 

between in vitro infection assays and in vivo tropism. 

 SIVmac1A11 was isolated from the same rhesus macaque that was the origin of 

the SIVmac251 clone. The SIVmac1A11 strain replicates efficiently in RhPBMCs, 

human T cell lines, and in both rhesus monocyte-derived macrophages (MDM) and 

alveolar macrophages (102, 103). While the SIVmac1A11 clone differed from 

SIVmac239 in multiple genes, the Env protein by itself has been shown to capable of 

CD4-independent fusion and thus is likely the driver of macrophage tropism (101, 107). 

Rhesus macaques infected with SIVmac1A11 display transient viremia and do not 

progress to AIDS (103). 

 The 17E-Fr SIVmac strain is a chimeric virus made up of the entire env and nef 

genes and the 3’ LTR of the neurovirulent SIV/17E-Br strain in the backbone of 

SIVmac239. SIV/17E-Br is an uncloned swarm from SIVmac239 infected rhesus 

macaques exhibiting CNS disease (110). SIV/17E-Fr retained the macrophage tropism 

and neurovirulence of SIV/17E-Br but was attenuated in vivo (104). Similar to 

SIVmac1A11, while multiple genes in SIVmac17E-Fr differ from SIVmac239, the 

SIVmac17E-Fr Env alone has displayed an ability for CD4-independent fusion (107). 
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Currently, SIVmac17E-Fr is used in a co-infection model with the immunosuppressive 

swarm SIV/DeltaB670 to create accelerated CNS disease in pigtail macaques (111). 

 The 2002 study by Puffer et al. (107) clearly demonstrated that Envs from these 

three macrophage-tropic SIV strains were capable of CD4-independent cell-cell fusion 

and pseudotype infection of cells transfected with RhCCR5 but not CD4. Along with this 

altered cellular tropism and ability to infect cells without CD4, these Envs were also 

distinctive for their neutralization sensitivity to both sera from SIVmac239-infected 

animals and monoclonal antibodies. The attenuation and neutralization sensitivity of 

these strains likely explain why they arise infrequently in vivo, and when they do why 

they often replicate primarily in immune privileged sites like the brain rather than 

systemically. 

 Ortiz, et al. (112), published another key study in the field of CD4-independent 

SIVs in 2011, in which rhesus macaques were administered an anti-CD4 antibody, 

resulting in the depletion of peripheral CD4+ T cells. These animals were then infected 

intravenously with the SIVmac251 swarm. Animals that had been depleted of CD4 T 

cells exhibited high and sustained viral loads with an accelerated progression to fatal 

AIDS in comparison to the SIVmac251-infected undepleted control animals. Analysis of 

env clones isolated during infection revealed that the majority of Envs from depleted 

animals were capable of CD4-independent infection in a pseudotype assay while all Env 

proteins from undepleted animals were strictly CD4-dependent. It is important to note 

that the isolated Envs capable of CD4-independent pseudotype infection did so at levels 

approximately 40-60% of infection on cells with CD4 and CCR5. These envs arose by 42 

days post infection and appear to have originated from a macrophage-tropic variant 

17



www.manaraa.com

contained within the inoculum swarm (it either existed in the inoculum or rapidly evolved 

from a closely related variant) that quickly dominated the viral swarm in the depleted 

animals where CD4+ T cells were scarce (112). Similar to the viral strains described 

above, animals that had been depleted of CD4+ T cells and had developed macrophage-

tropic strains exhibited higher rates of lung and brain disease (112, 113)(M. Paiaridini, 

personal communication). 

 Recent work describing a novel macrophage tropic strain isolated from the blood 

of an SIVmac251-infected rhesus macaque noted that CD4-independent transmission 

occurred only in the context of cell-cell contact and not under cell-free conditions (114, 

115). The macrophage tropic phenotype of this strain was attributed to the loss of a single 

glycosylation site in the V2 region of Env (114). When this mutation alone was 

introduced into SIVmac239, it resulted in an increase in macrophage infection in vitro 

and CD4-independent cell-cell fusion, but not infection of a CD4-negative cell line  

(115). The authors posit that CD4-independent cell-cell transmission may be an important 

mechanism for promoting macrophage tropism within tissues, as this mode of 

transmission has been shown to be more efficient than cell-free virus infection and to 

protect viruses from inhibition by neutralizing antibodies (115–118). 

 It is important to note that while some macrophage-tropic Envs have been shown 

to be CD4-independent in vitro, it is not clear whether these strains infect in a CD4-

independent manner in vivo. Presumably, if CD4 is present along with CCR5 on the 

surface of cell, the virus will utilize both receptors to increase viral entry efficiency. 

Additionally, many of the “CD4-independent” SIV Envs studied in vitro have contained a 

premature stop codon in the cytoplasmic tail, as a result of passaging through human T 
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cell lines (119). One consequence of this truncation is the increase of Env expression on 

virions (48), thereby potentially increasing Env-receptor fusion frequency. Infectious 

molecular clones of many of these “CD4i” viruses with full length cytoplasmic tails have 

yet to be tested for their ability to infect CD4- CCR5+ cell lines and primary cells, and 

whether infection occurs as efficiently as when CD4 is present. Thus, while macrophage-

tropic SIV strains that are capable of CD4-independent entry have been well 

characterized in vitro, a true CD4-independent variant, i.e. one that does not bind CD4, 

has not previously been evaluated in vivo. 

 

Goals of This Thesis 

 As discussed above, while macrophage tropic strains with CD4-independent 

properties have been characterized, a truly independent variant, i.e. one with absent or 

greatly reduced CD4 binding, has yet to be tested in an in vivo model. Here I present the 

development and testing of a novel, CD4-independent strain of SIV in vivo. In Chapter 2 

I describe the derivation and virologic characteristics of a CD4-independent SIVmac239 

variant, documenting the mutations that conferred CD4-independence, the effects of these 

mutations on neutralization sensitivity, and alterations in cell tropism in vitro. I then, in 

Chapter 3, examine the effect of CD4-independence on viral replication, pathogenesis, 

viral evolution, and host immune responses in rhesus macaques, as well as the results of a 

challenge study. Finally, in Chapter 4 I will provide a summary of our work and suggest 

future avenues of exploration. 
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Abstract 

CD4 tropism is conserved among all primate lentiviruses and likely contributes to viral 

pathogenesis by targeting cells that are critical for adaptive anti-viral immune responses. 

Although CD4-independent variants of HIV and SIV have been described that can utilize 

coreceptors CCR5 or CXCR4 in the absence of CD4, these viruses typically retain their 

CD4 binding sites and can still interact with CD4. We describe the derivation of a novel 

CD4-independent variant of pathogenic SIVmac239, termed iMac239 that was used to 

create an R5-tropic SIV lacking a CD4 binding site. iMac239 contained 4 mutations in 

gp120 and 2 in the gp41 ectodomain. A single change (D178G) in the V1/V2 region was 

sufficient to confer CD4-independence, although additional mutations were required to 

stabilize this virus for a spreading infection. Like other CD4-independent viruses, 

iMac239 was highly neutralization sensitive, although mutations were identified that 

could confer CD4-independent infection without increasing its neutralization sensitivity. 

Strikingly, iMac239 retained the ability to replicate in cell lines and primary cells even 

when its CD4 binding site had been ablated by deletion of a highly conserved aspartic 

acid at position 385 that for HIV-1 plays a critical role in CD4 binding. iMac239, with 

and without the D385 deletion, exhibited an expanded host range in primary rhesus 

peripheral blood mononuclear cells that included CCR5+, CD8+ T cells. As the first non-

CD4 tropic SIV, iMac239 will afford the opportunity to directly assess the in vivo role of 

CD4 targeting on pathogenesis and host immune responses. 
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Introduction 

The primate lentiviruses, HIV-1, HIV-2 and SIV share a common mechanism of 

entry on target cells by interacting with CD4 and a member of the chemokine receptor 

family (1–3). CD4 binding to the envelope glycoprotein (Env) trimer initiates a cascade 

of conformational changes resulting in formation and exposure of the coreceptor binding 

site on gp120. Following coreceptor binding, gp41 is released to interact with the target 

cell membrane, leading to formation of a fusion intermediate and, ultimately, the 6-helix 

bundle, providing energy for membrane fusion and viral entry (1, 3–7). While CCR5, 

CXCR4, and, less commonly, other coreceptors can be used by these viruses during entry, 

CD4 tropism, mediated by a highly conserved binding site on gp120, is an invariant 

feature (1, 8), indicating that it likely plays a major role in pathogenesis. CD4 binding 

enables HIV-1 to evade host neutralizing antibody responses by limiting antibody access 

to neutralizing epitopes once the virion has attached to CD4 on the cell surface (9, 10). In 

addition, CD4 tropism in vivo focuses viral infection onto CD4+ T cell subsets that are 

critical in mediating adaptive anti-viral immunity (11–14). These cells include Th1, Th17, 

T follicular helper, and T regulatory cells that collectively contribute to the coordinated 

induction, maturation and maintenance of cellular and humoral immune responses (15–

24) and (for Th17 cells) to the integrity of the epithelial barrier at mucosal surfaces (18, 

25, 26).  

Although CD4-tropism is conserved, rare examples of CD4-independent viruses 

have been described that can utilize coreceptors, either CCR5 or CXCR4, for entry in the 

absence of CD4. These viruses, through mutations in gp120 and/or gp41, pre-form and 

expose a functional coreceptor binding site that is typically present only after CD4 
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binding occurs (27–38). By cryo-electron microscopy, Env trimers on CD4-independent 

viruses exhibit more open conformations compared to CD4-dependent viruses and in the 

absence of CD4 acquire conformations typically seen only after CD4 binding and 

triggering occur (39, 40). Although CD4-independent viruses have been derived in vitro 

(27–35, 41), they have only rarely been observed in vivo, as in rhesus macaques during 

late stage disease or following depletion of CD4+ T cells prior to infection with anti-CD4 

antibodies (42–44). CD4-independent viruses are typically highly neutralization sensitive, 

as a result of their more open Env trimer conformations and exposure of neutralization 

epitopes on cell-free virions that are poorly accessible after binding to the cell surface (10, 

30, 37, 38, 45). Thus, CD4-independent viruses are likely strongly selected against in 

vivo (30, 46, 47). Nonetheless, although not strictly CD4-independent, HIVs and SIVs 

with the ability to utilize low levels of CD4 for entry are well-described, and this 

phenotype has been proposed to contribute to infection of macrophages in the periphery 

and microglial cells in the brain, which express lower levels of CD4 than T cells (30, 41–

43, 48–55). For one neuropathic SIV isolate, its ability to cause AIDS encephalopathy in 

macaques correlated with infection of brain-derived endothelial cells that expressed 

CCR5 but not CD4 (56). Of note, viruses that are CD4-independent typically retain their 

CD4 binding site and the ability to engage CD4, if present (28, 32, 56–58), and have been 

shown to exhibit faster fusion kinetics in the presence of CD4 than CD4-dependent 

viruses (59). 

For HIV-1, the CD4 binding site has been resolved at the atomic level and shown 

to be a deeply recessed pocket on gp120 formed by regions within the inner and outer 

domains that interact cooperatively with CD4 and gp41 during CD4 binding (1, 4, 39, 60, 
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61). Among HIV-1 and SIV isolates, some variability exists in these interactions. For 

SIVmac, the bulky side chain at Trp-375 has been shown to fill a space in the CD4 

binding pocket reducing its dependency on CD4 binding, while HIV-1 contains a serine 

at this position that requires additional contributions from a layer on the gp120 inner 

domain (60). In HIV-1, residues Asp-368, Glu-370, and Tryp-427 are highly conserved 

and make multiple contacts with CD4, particularly amino acids Phe-43 and Arg-59 in its 

outermost D1 domain. Among these, Arg-59 forms a salt bridge with Asp-368 on gp120, 

and mutations in gp120 (8, 62) or CD4 (63, 64) that disrupt this bond ablate CD4 binding. 

Although crystallographic resolution of an SIV gp120 has not been determined, an 

aspartic acid at the analogous position (i.e. amino acid 385 for SIVmac) is conserved in 

all SIVs except for two SIV mandrill Env clones that contain a glutamic acid residue, 

suggesting that this aspartic acid is also critical for SIV gp120 interactions with CD4 (8) 

(Suppl. Fig. 2-1). In fact, a brain-derived isolate from a SIVmac239-infected macaque 

with an asparagine at this position, exhibited a 40-fold reduction in CD4 binding and 

CD4-independent use of CCR5 in a cell-cell fusion assay (65). 

We describe the in vitro derivation of a novel variant of SIVmac239 that is both 

CD4-independent and unable to interact with CD4. This variant was adapted to replicate 

in a CD4-negative clone of SupT1 cells that expressed rhesus CCR5. Four mutations in 

gp120 and 2 in the gp41 ectodomain were associated with CD4-independence, and of 

these, a D178G mutation in the region analogous to the HIV-1 V1/V2 region was shown 

to be necessary for this phenotype, while additional mutations were required to stabilize 

the virus for a spreading infection. Although iMac239, like other CD4-independent 

viruses, was highly neutralization sensitive, mutations in gp120 were identified that 
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conferred CD4-independence in the absence of increased neutralization sensitivity. 

Notably, when Asp-385 was deleted to disrupt the CD4 binding site, fusion and 

infectivity of parental SIVmac239 were ablated while iMac239 remained fully replication 

competent on CD4+, CCR5+ cell lines and primary macaque lymphocytes. In addition, 

iMac239, with and without the D385 deletion, exhibited an expanded host range in 

primary macaque peripheral mononuclear cells that included CCR5+, CD8+ T cells. Thus, 

iMac239 will provide a novel platform for exploring the molecular and structural 

determinants for CD4-independence and neutralization sensitivity, and has enabled a 

novel non-CD4 tropic SIV variant to be derived that can be used to directly explore the 

role of CD4 binding and tropism in pathogenesis and in modulating host immune 

responses. 

 

Methods 

Cell Lines 

Human SupT1 and BC7 cell lines (27) were transfected with a lentiviral vector to 

express rhesus CCR5 (RhCCR5)(66). SupT1/RhCCR5, BC7/RhCCR5, CEMx174, and 

HUT-78 cell lines were maintained in RPMI 1640 medium supplemented with 10% fetal 

bovine serum (FBS), 2 mM glutamine, and 2 mM penicillin-streptomycin (RPMI-

Complete). The Japanese quail fibrosarcoma cell line QT6, the human embryonic kidney 

cell line 293T, and the human HeLa cell line TZM-bl engineered to express CD4 and 

CCR5 (obtained through the AIDS Research and Reference Reagent Program, Division 

of AIDS, NIAID, NIH, from John C. Kappes) were cultured in Dulbecco’s modified 
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Eagle medium supplemented with 10% FBS, 2 mM glutamine, and 2 mM penicillin-

streptomycin (DMEM-Complete). 

 

Env Cloning and Mutagenesis 

Adapted env clones from SIV-infected BC7/RhCCR5 cultures were isolated as 

described previously (67). Mutant env genes were created using the QuikChange site-

directed mutagenesis kit (Stratagene) following the manufacturer’s protocol. To repair a 

premature stop codon in the cytoplasmic tail of Env at position 734 this codon was 

reverted to the wild-type Q by QuikChange. To generate recombinant molecular clones 

of the SIVmac239 genome containing adapted and mutant env genes, env clones were 

cloned into the previously described pHVP-2 (also known as p239SpSp3’) construct 

containing an open nef reading frame with a corrected HindIII site at position 602, and 

which contains the 3’ half of the viral genome, through HindIII/SacI digest (68). Full-

length genome constructs were then generated by cloning pVP-2 with p239SpSp5’ as 

previously described (67) (p239SpSp5’ was obtained through the AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH, from Ronald Desrosiers). 

The identities of the recombinant clones were confirmed using restriction analysis and 

DNA sequencing. For the generation of luciferase reporter viruses, SIV env genes with a 

premature stop codon in the cytoplasmic tail (CT) coding region (Q734Stop) in pCR2.1 

were digested with KpnI and XbaI and cloned into the similarly digested pCDNA3.1(-) 

expression construct.  
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Fusion Assays 

Env fusion was assessed quantitatively on quail QT6 cells using a cell-cell fusion 

assay, expression constructs for CD4 and various coreceptors, and a reporter plasmid 

encoding luciferase under the control of a T7 promoter as has been previously described 

(67, 69, 70). Rhesus CD4 and coreceptors CCR5, CXCR6, APJ, GPR1, GPR15, CCR2 

and CCR8 were kindly provided by Drs. Ronald Collman and Robert Doms. 

 

Luciferase Reporter Viruses 

Luciferase reporter viruses were generated, as previously described (71), by 

cotransfecting 293T cells with 8 μg of plasmid encoding the SG3 Δenv-based luciferase 

virus backbone and 4 μg of the appropriate env expression vector for 3-8hrs with the 

FuGENE6 transfection agent (Promega). Cell supernatants were collected at 48hrs post-

transfection and stored at -80°C.  

 

Virus Production 

To generate molecularly cloned viruses, 293T cells were transfected with full-

length viral genome constructs for 5hrs using calcium phosphate. Cell supernatants were 

collected 48 or 72hrs post-transfection and stored at -80°C. The uncloned iMac239 

swarm was generated from supernatants of acutely infected BC7RhR5 cells, and stored at 

-80°C. 

 

 

 

41



www.manaraa.com

	  

	  

Viral Replication Assays 

Virus concentrations were determined by enzyme-linked immunosorbent assay 

for viral p27 Gag antigen (Advanced Bioscience Laboratories). SupT1/RhCCR5 and 

BC7/RhCCR5 were inoculated with equivalent amounts of p27-containing virus. 

Following overnight incubation at 37°C, infected cells were washed in RPMI 

supplemented with 5% FBS to remove excess virus, and then maintained in RPMI 

Complete media. Viral replication was monitored by viral reverse transcriptase (RT) 

activity or quantity of p27 Gag in the culture supernatants. 

 

Neutralization Assays 

The sensitivity of luciferase reporter viruses bearing Envs of interest to 

neutralization by sera or plasmas from SIVmac251-infected rhesus macaques, soluble 

CD4, or monoclonal antibodies to SIVmac Envs, including murine antibodies 7D3, 8C7, 

11F2, 17A11, 5B11, 4E11, 171C2, and 36D5 (72) or rhesus antibodies 1.4H, 6.10F, 

6.10B, 9.1A, 1.7A, 1.10A, 2.6C, 3.11H (73–76), and 4.10F (unpublished, produced as in 

(75)) (kindly provided by Dr. James Robinson) was assessed in a TZM-bl pseudotype 

assay as previously described (71). Briefly, luciferase reporter viruses were incubated for 

1hr at 37°C with various dilutions of serum, plasma, sCD4, or monoclonal antibodies and 

then used to infect TZM-bl cells pretreated with DEAE-dextran. Cells were incubated at 

37°C for 48hrs and then lysed with the BriteLite Plus luminescence reporter assay system 

(Perkin Elmer). Infection was quantified by measuring luciferase activity with a Thermo 

LabSystems Luminoskan Ascent luminometer. Neutralization was measured as the 

reduction in luciferase activity compared with that of untreated controls. 
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Infection of PBMCs 

Purified peripheral blood mononuclear cells (PBMCs) from rhesus macaques 

stored at -140°C were thawed and stimulated for 3 days with 5 μg/mL ConA at a 

concentration of 106 cells/mL in RPMI Complete media. Cells (5 x 106) were then 

inoculated with viruses (125 ng of p27 Gag) and media supplemented with IL-2 (100 

IU/mL). After 24hrs, cells were washed to remove the viral inoculum and cultured in 

fresh RPMI Complete media supplemented with IL-2 (100 IU/mL). 

 

Antibody Reagents 

Antibodies used for surface staining included anti-CD14 BV650, anti-CD20 

BV605, anti-CD8 BV570 (Biolegend), anti-CD16 APC Cy7, anti-CD95 PECy5, anti-

CCR5 PE (BD Biosciences), anti-CD4 PECy5.5 (Invitrogen Life Technologies), and anti-

CD28 ECD (Beckman Coulter). Antibodies used for intracellular staining included anti-

CD3 V450 (BD Biosciences) and anti-p27 FITC (kindly provided by E. Rakasz, 

WNPRC). 

 

Flow Cytometry Staining Assay 

At peaks of viral replication, infected rhesus PBMCs were identified by p27 Gag 

positivity and flow cytometry. Aliquots of cells (1 x 106 per sample) were washed once 

with PBS and stained for viability with Aqua amine-reactive dye (Invitrogen) for 10 min 

in the dark at room temperature. A mixture of surface marker antibodies was added and 

kept at room temperature for 30 min in the dark. Cells were then washed with PBS 

containing 1% bovine serum albumin (BSA) and 0.1% sodium azide and permeabilized 
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for 17 min at room temperature using the Cytofix/Cytoperm Kit (BD Biosciences). 

Immediately following permeabilization, cells were washed in Perm/Wash buffer (BD 

Biosciences) and a cocktail of antibodies for intracellular markers added and incubated in 

the dark for 1 hr at room temperature. Cells were then washed with Perm/Wash buffer, 

fixed with PBS containing 2% paraformaldehyde, and stored at 4°C until flow cytometric 

analysis. For flow cytometric analysis 3 x 105 events were acquired on an LSRII flow 

cytometer (BD Immunocytometry Systems) modified to detect up to 18 fluorophores. 

Antibody capture beads (BD Biosciences) were used to prepare compensation tubes for 

each individual antibody used in the experiment. Data analysis was performed using 

FlowJo Software version 9.0.1 (TreeStar). 

 

Nucleotide Sequence Accession Number 

The iMac239 env sequence has been deposited in GenBank under accession 

number KT959233. 

 

RESULTS 

Adaptation of SIVmac239 to CD4-negative BC7/RhR5 cells.  

We derived a CD4-independent strain of SIV by serially passaging SIVmac239 

on a 1:10 mixture of CD4-positive SupT1 cells and a CD4-negative variant of this line, 

BC7 (58) each of which stably expressed rhesus CCR5 (designated SupT1/RhR5 and 

BC7/RhR5, respectively). After 13 passages the virus could infect a pure culture of 

BC7/RhR5 cells and was then passaged an additional 8 times in this cell line. This viral 

swarm was able to replicate with high efficiency in both SupT1/RhR5 and BC7/RhR5, 
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while parental SIVmac239 could only replicate in the CD4+ SupT1/RhR5 cells (Figure 2-

1A). Env clones PCR-amplified from genomic DNA were derived, and their ability to 

mediate CD4-independent fusion using rhesus CCR5 evaluated on quail QT6 cells (69) 

(Fig. 2-1B). One clone (p8cl18) mediated comparable levels of fusion in the presence or 

absence of rhesus CD4 and was selected for further characterization. When inserted into a 

SIVmac239 backbone, this virus (iMac239 p8cl18 in Fig. 2-1C) was able to replicate 

with rapid growth kinetics in both SupT1/RhR5 (data not shown) and BC7/RhR5 cells 

(Fig. 2-1C), while parental SIVmac239 was only able to replicate in SupT1/RhR5 (Fig. 2-

1A). CD4-independent replication in BC7/RhR5 cells also occurred when the expected 

premature stop codon acquired during passaging of this SIVmac in human cell lines (77) 

was corrected (Suppl. Fig. 2-2), and this Env was used to construct a virus containing a 

full length cytoplasmic tail, designated iMac239, that was employed in all subsequent 

experiments, except for production of pseudotypes, in which short CT Envs were used.  

 

Mutations required for iMac239 CD4-independence 

Sequencing of the iMac239 p18cl8 env revealed 7 coding changes from 

SIVmac239, 4 in gp120 and 3 in gp41 (Table 2-1, Suppl. Fig. 2-3). None of the gp120 

mutations occurred in analogous regions of HIV-1 gp120 that contribute to the CD4 

binding site, indicating that although the iMac239 Env and virus were CD4-independent, 

they likely retained the ability to interact with CD4. For gp120, three mutations (D178G, 

D337Y, and R427K) occurred within variable loop regions V1/V2, V3, and V4, 

respectively, while a single mutation (H224Q) occurred in a region analogous to the HIV-

1 C2 domain flanking the V1/V2 stem. In gp41, two mutations in the ectodomain (K573T 
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Figure 2-1: Replication and fusion of CD4-independent variants of SIVmac239. 
(A) Replication of parental SIVmac239 and an uncloned CD4-independent viral swarm is 
shown in CD4+, SupT1/RhR5 cells (Left panel) and CD4-negative BC7/RhR5 cells 
(Right panel) each of which stably expressed rhesus CCR5. RT (reverse transcriptase 
activity). (B) Fusion activity of SIVmac239 and four iMac239 Env clones is shown on 
QT6 cells using a cell-cell fusion assay. For each Env, the level of CD4-independent 
fusion on rhesus CCR5 is shown as a percentage of fusion (luciferase activity) in the 
presence of rhesus CD4. Background fusion levels on cells expressing only GFP were 
subtracted. The data shown are the means of three experiments plus the standard errors of 
the means (S.E.M.). (C) Growth curves in CD4-negative, BC7/RhR5 cells are shown for 
wildtype (WT) SIVmac239, the iMac239 viral swarm, and four recombinant 
SIVmac239-based viruses bearing the indicated iMac239 Env clones. RT activity in 
culture supernatants was measured at the indicated time points. Results from a 
representative experiment are shown.

SIVmac
23

9
p1c

l8

p1c
l29

p1c
l39

p8c
l18

0

50

100

150

Envelope

%
 o

f R
hC

D
4 

+ 
R

hR
5 

Fu
si

on RhCD4 + RhCCR5 RhCCR5 Only

iMac239 Clones

BC7/RhR5

0 5 10 15 20 25
10

100

1,000

10,000

100,000

1,000,000
RT

 (c
pm

)

SupT1/RhR5

Day

46



www.manaraa.com

Table 2-1: Amino acid differences in envelope glycoproteins between 
SIVmac239 and CD4-independent iMac239.

Region of Env 
gp120 gp41 

V1/V2 C2 V3 V4/V5 HR1 HR2 CT 

A.A. Position 178 224 337 427 573 673 820 

SIVmac239 D H D R K N L 

iMac239 G Q Y K T I M 
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and N673I) were located within regions comparable to HIV-1 heptad-repeat domains 1 

and 2 (HR1 and HR2), respectively, while one (L820M) occurred in the cytoplasmic tail.  

The contributions of these mutations to CD4-independence were first evaluated in 

a cell-cell fusion assay (Fig. 2-2A). In the absence of CD4 the iMac239 Env generated 

fusion levels on CCR5 that were comparable to or slightly greater than in the presence of 

CD4, while parental SIVmac239 exhibited <10% fusion. When iMac239 mutations were 

introduced singly into the SIVmac239 Env, D178G in the V1/V2 loop was sufficient to 

confer CD4-independent fusion at levels approximately 50% greater than in the presence 

of CD4, although gp41 mutations K573T and N673I each produced modest increases in 

fusion to levels 40-50% of fusion in the presence of CD4.  

We next evaluated CD4-independence in an infection assay on SupT1/RhR5 and 

BC7/RhR5 cells using viruses containing Envs with varying combinations of iMac239 

mutations (Fig. 2-2B). When all 4 gp120 mutations were introduced into the SIVmac239 

Env (SIVmac239 D178G H224Q D337Y R427K in Figure 2B), robust CD4-independent 

replication was observed in BC7/RhR5 cells with kinetics and levels that were 

comparable to a virus with the full iMac239 Env. However, a virus containing only the 

gp41 K573T and N673I mutations replicated poorly in both cell types (not shown). 

Interestingly, although the D178G mutation alone was sufficient to confer CD4-

independence in the cell-cell fusion assay, a virus containing only this mutation 

replicated poorly in BC7/RhR5 cells and was noninfectious on CD4+ SupT1/RhR5 cells 

(Fig. 2-2B). Virions from this virus exhibited similar levels of Env compared to both 

SIVmac239 WT and iMac239 virus, as measured by western blot, indicating that this 

defect was not the result of a failure of Env incorporation into virions (data not shown). 
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Figure 2-2: Determinants for iMac239 Env CD4-independence in cell-cell 
fusion and viral replication assays. (A) Fusion activity on rhesus CCR5 in the 
presence or absence of rhesus CD4 is shown for SIVmac239 Envs containing the 
indicated single mutations from iMac239. Data from 3 experiments + S.E.M are 
shown as in Fig. 1B. (B) Replication of SIVmac239-based viruses bearing the 
indicated Envs is shown in CD4+ SupT1/RhR5 (Left panel) and CD4- BC7/RhR5 
cells (Right panel). Four changes in gp120 are sufficient to confer 
CD4-independent replication. A virus with D178G alone was unable to replicate in 
either cell type, but rescued for replication in SupT1/RhR5 by H224Q. RT activity 
was measured at the indicated time points. Results from a representative 
experiment are shown.
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However, when viruses contained the D178G in combination with the gp120 H224Q 

mutation, replication was restored in both SupT1/RhR5 and BC7/RhR5 cells, although 

CD4-independent replication occurred more slowly in the latter (Fig. 2-2B). This 

apparent rescue of infectivity for virus containing the D178G alone was not seen when 

the other gp120 mutations were inserted individually (not shown). Significantly, removal 

of the D178G mutation from the iMac239 Env with all four gp120 changes resulted in a 

virus (SIVmac239 H224Q D337Y R427K) that was replication competent on 

SupT1/RhR5 cells but no longer CD4-independent and unable to infect BC7/RhR5 cells 

(Fig. 2-2B). Thus, among the gp120 mutations that conferred CD4 independence to 

SIVmac239, while D178G in V1/V2 was critical, this mutation alone resulted in a virus 

that was noninfectious in both CD4-positive and -negative cell types but could be rescued 

by the H224Q change in gp120.  

 

Neutralization sensitivity of iMac239 

For HIV-1 and SIV, CD4-independent Envs are typically highly neutralization 

sensitive, owing to their more open conformation of the Env trimer on virions (39, 40) 

and formation of highly immunogenic epitopes that are typically induced only in the 

presence of CD4 (9, 30, 37, 38). Given the well-described neutralization resistance of the 

SIVmac239 Env, we were interested in determining the sensitivity of the iMac239 Env to 

a panel of sera and plasmas from SIVmac-infected rhesus macaques and to a panel of 

anti-SIVmac gp120 murine monoclonal antibodies, previously shown to potently 

neutralize lab-adapted SIVmac251 but not SIVmac239 (72). Neutralization assays were 

performed on TZM-bl cells using viral particles pseudotyped with Envs. In addition to 
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iMac239, we also evaluated SIVmac239 Envs containing the 4 gp120 changes that were 

sufficient to confer CD4 independence (Fig. 2-2B) in viral replication assays, and an Env 

containing only the D178G, which was CD4-independent in the cell-cell fusion assay 

(Fig. 2-2A).  

As expected, whereas SIVmac239 was resistant to neutralization by anti-SIV sera 

or plasma, with inhibitory dilutions (ID50) <30, iMac239 was highly sensitive with 

ID50s >2 million for plasma and 8,793 for sera (Fig. 2-3). Similar results were seen with 

the panel of monoclonal antibodies, with inhibitory concentrations (IC50) >10-26 µg/ml 

for SIVmac239 and <0.0003 µg/ml for the 3 antibodies tested. Surprisingly, iMac239 

Envs containing the minimum number of mutations in gp120 that conferred CD4 

independence in either cell-cell fusion or viral infection assays remained neutralization 

resistant at levels comparable to parental SIVmac239. These findings indicate that 

although typically associated, CD4-independence and increased neutralization sensitivity 

can be dissociated. Moreover, these findings also suggest that changes in the iMac239 

gp41 that were selected for in vitro and not present in the SIVmac239 D178G H224Q 

D337Y R427K Env used in this assay were key determinants for its marked 

neutralization sensitivity. 

 

CD4-independence of iMac239 is retained following ablation of the CD4 binding site 

Although CD4-independent Envs are structurally altered and expose or form 

neutralization epitopes (30, 37–40, 45), as noted above, the iMac239 Env on virions 

likely retained a CD4 binding site. In order to determine if the iMac239 Env would 

remain competent for fusion and infection even after its CD4 binding site had been 
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Figure 2-3: Neutralization sensitivity of Envs with iMac239 mutations. Viral 
pseudotypes containing the indicated Envs were preincubated with varying dilutions 
of plasma, serum, or monoclonal antibodies prior to infection of TZM-bl cells. 
Inhibitory dilutions (ID50s) for plasma and serum are color-coded (<100, green; 
100-1,000, yellow; 1,000-100,000, orange; >100,000 red). Inhibitory concentrations 
of monoclonal antibodies (IC50s) are color-coded (>2 ug/mL, green; 0.2-2 ug/mL, 
yellow; <0.01-0.2 ug/mL red).

         
SIVmac239 iMac239 SIVmac239 

D178G 
SIVmac239 

D178G H224Q 
D337Y R427K 

Plasma/Serum 

23696 Pool A 270 >2,343,750 358 442 
23166 PoolA <30 >2,343,750 46 47 
24724 Pool B <30 >2,343,750 58 69 
P309 Serum <30 8,703 <30 <30 

CD4-induced 
Epitope 

Antibodies 

7D3 >26 <0.0003 9.34 11.82 
11F2 >10.33 <0.0001 >10.33 >10.33 
1.4H >15.67 <0.0002 >15.67 >15.67 

Plasma Dilutions (ID50) <100 100 - 1,000 1,000 - 100,000 >100,000 

IC50 Values (ug/mL) >2 0.2 - 2 <0.01 - 0.2 
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ablated, we introduced a 3 nucleotide deletion removing a codon for an aspartic acid at 

amino acid position 385 that is highly conserved throughout HIV and SIV phylogeny (8) 

(Suppl. Fig. 2-1). For HIV-1, the analogous Asp at position 368 (HXB numbering) forms 

a salt bridge with arginine 59 of CD4 (1, 2), and a D368R mutation in HIV-1 gp120 

ablates CD4 binding and most CD4 binding site epitopes (8, 62). 

The effects of the D385 deletion (∆D385) on SIVmac239 and iMac239 Envs were 

assessed in cell-cell fusion assays and on viral replication on CD4-positive and -negative 

cell lines. Remarkably, whereas the ∆D385 largely ablated fusion of SIVmac239 Env on 

target cells bearing CD4 and CCR5 to levels <10% of wildtype, iMac239 fusion was 

unaffected and was actually enhanced in the presence of this mutation (Fig. 2-4A). When 

viral replication was assessed in SupT1/RhR5 and BC7/RhR5 cells, SIVmac239 

containing the ∆D385 mutation was unable to replicate in either cell type, whereas 

iMac239 with or without the ∆D385 mutation replicated in both cell types with similar 

kinetics (Fig. 2-4B Left and Right panels). We confirmed that viruses used in these 

infection assays expressed comparable amounts of gp120 relative to p27 Gag (not shown). 

The sensitivity of viral pseudotypes bearing these Envs to neutralization by 

soluble CD4 (sCD4) was also assessed as an indicator of CD4 binding to Env trimers on 

virions. Infectivity of pseudotypes containing SIVmac239, SIVmac251.6 (a lab-adapted 

SIVmac), iMac239, or iMac239-∆D385 Envs was evaluated on TZM-bl cells in the 

presence of varying concentrations of sCD4. While sCD4 sensitivity was observed for 

SIVmac239 (IC50, 7.8 µg/ml) and markedly enhanced for SIVmac251.6 (IC50, 0.1 

µg/ml) and iMac239 (IC50 <0.01 µg/ml), iMac239 containing the ∆D385 mutation was 

highly resistant (IC50, >20 µg/ml) (Fig. 2-4C). Collectively, these findings indicate that 
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Figure 2-4: Effect of the ΔD385 mutation in cell-cell fusion, viral replica-
tion, and neutralization assays. (A) Fusion activities of SIVmac239, 
SIVmac239-ΔD385, iMac239, and iMac239-ΔD385 on rhesus CCR5 only are 
shown for each Env as the percentage of fusion in the presence of rhesus CD4. 
Background was subtracted as in Fig. 1B. The data shown are the means of four 
experiments + S.E.M. (B) Replication of SIVmac239, SIVmac239-ΔD385, 
iMac239, and iMac239-ΔD385 viruses in CD4+ SupT1/RhR5 cells (Left panel) 
and CD4- BC7/RhR5 cells (Right panel). RT activity in culture supernatants was 
measured at the indicated time points. Results from a representative experiment 
are shown. (C) Soluble CD4 (sCD4) neutralization of viral pseudotypes 
containing SIVmac239, SIVmac251.6, iMac239, and iMac239-ΔD385 Envs is 
shown on TZM-bl cells. Percent neutralization was calculated using luciferase 
activity normalized to infection in the absence of sCD4. Results from a 
representative experiment are shown.
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although the iMac239 Env contained its CD4 binding site and was highly sensitive to 

sCD4 neutralization, this Env could mediate entry while lacking a CD4 binding site.  

 

Identifying neutralization epitopes on iMac239 and iMac239-∆D385. 

Given the exquisite sensitivity of iMac239 Env to sera from SIVmac-infected 

macaques and monoclonal antibodies to CD4-induced epitopes and the ability of 

iMac239 virus to replicate without a functional CD4 binding site, we sought to determine 

if iMac239’s neutralization sensitivity could be mapped to particular epitopes, and if 

conformational changes associated with its altered antigenicity were affected by the loss 

of the CD4 binding site. Neutralization of viral particles pseudotyped with Envs from 

SIVmac239, iMac239 or iMac239-∆D385 was assessed on TZM-bl cells using a panel of 

monoclonal antibodies to SIVmac variable loops (V2, V3 and V4), and to the CD4 and 

CCR5 binding sites (72–76). As shown (Fig. 2-5), while SIVmac239 was largely resistant 

to all antibodies tested, iMac239 was sensitive to 10 of 13 antibodies and resistant only to 

an anti-CD4/CCR5 binding site (17A11), an anti-V2 (171C2), and an anti-V4 loop (1.7A) 

antibody. The iMac239-∆D385 Env was also highly neutralization sensitive at levels that 

were comparable to or greater than iMac239. Thus, relative to SIVmac239, CD4-

independent iMac239 was globally neutralization sensitive to multiple antibodies, and 

this sensitivity was further enhanced by the ∆D385 mutation. These findings also indicate 

that while the ∆D385 mutation largely ablated CD4 binding function, it did not disrupt 

the antigenicity of the CD4 binding site, as determined by the antibodies in our panel. 
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Figure 2-5: Neutralization of viral pseudotypes by monoclonal antibodies. 
Neutralization of viral pseudotypes bearing SIVmac239, iMac, or 
iMac-ΔD385 Envs by the indicated monoclonal antibodies is shown. IC50s are 
shown and color-coded (>2 ug/mL, green; 0.2-2 ug/mL, yellow; <0.01-0.2 ug/mL 
red).

 SIVmac239 iMac239 iMac239- D385 Epitope 

6.10B >34.5 0.1 0.08 CD4 Binding Site 

5B11 34.66 0.35 0.08 CD4 Binding Site 

17A11 28.43 6.61 0.29 CD4/CCR5 Binding Site 

4E11 23.68 0.12 0.02 CD4/CCR5 Binding Site 

7D3 30.6 0.0004 0.001 CCR5 Binding Site 

171C2 19.28 22 0.8 V2 Loop 

6.10F >17.5 0.002 0.005 V3 Loop 

36D5 6.93 0.013 0.02 V3 Loop 

3.11H >50 0.01 0.02 V3 Loop 

1.7A >26 20.85 5.84 V4 Loop 

4.10F >20.5 2 0.09 V4 Loop 

1.10A >50 0.0003 0.001 V4 Loop 

9.1A >22.5 0.001 0.001 V4 Loop 

IC50 values (ug/mL) >2 0.2 - 2 <0.01 - 0.2 
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Replication of iMac239 and iMac239-∆D385 in primary rhesus macaque PBMC.  

Given the ability of CD4-independent iMac239 to replicate in T cell lines with or 

without a CD4 binding site, we assessed the infectivity of iMac239 and iMac239-∆D385 

on primary rhesus PBMCs. Similar to T cell lines, parental SIVmac239 containing the 

∆D385 mutation was completely noninfectious. However, both iMac239 and iMac239-

ΔD385 replicated to levels identical to SIVmac239, albeit with a delay to peak of 3-6 

days (Fig. 2-6A), indicating that a CD4 binding site was not required for this virus to 

infect primary cells.  

Next, given the potential for CD4-independent iMac239 and iMac239-∆D385 to 

have an expanded cellular tropism, we assessed their infectivity on mitogen (ConA) and 

IL-2 stimulated rhesus macaque PBMC using flow cytometry and a panel of antibodies to 

T, B and monocyte subsets and to CCR5. Peak intracellular viral p27 Gag expression 

occurred at different days post inoculation with SIVmac239 infection peaking at 4 dpi 

and iMac239 and iMac239-ΔD385 peaking at 10 dpi (Fig. 2-6A). Gating strategies are 

shown on uninfected cells (Suppl. Fig. 2-4). Among CD3+ T cells assayed at the viral 

peak, iMac239 infection produced a significant increase in p27 Gag-positive cells 

compared to both SIVmac239 and iMac239-∆D385 (i.e., 25.4% vs. 5.56% and 6.46%, 

respectively, in the representative experiment shown in Fig. 2-6B). Among p27 Gag+, 

CD3+ T cells, the vast majority (>90%) of SIVmac239-infected cells were negative for 

CD4 and CD8, most likely reflecting CD4+ T cells from which CD4 was downregulated 

by the effects of Nef and Env expression (78–81), and only rare cells (<1%) expressed 

CD8. In marked contrast, for iMac239 and iMac239-∆D385 infections, on average 60% 

and 40% of p27 Gag+ cells, respectively, were CD8-positive (Fig 6C). Infection of 
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Figure 2-6: Replication of SIVmac239 and iMac239 with and without the ΔD385 
mutation in rhesus PBMCs. (A) Replication of SIVmac239, SIVmac239-ΔD385, 
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Gag in culture supernatants was quantified by ELISA at the indicated time points. 
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cytometry cytograms from a representative experiment show the percentage of p27 
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express CD4 and/or CD8 at peak infection is shown (Left panel). Cytograms from a 
representative experiment show that for iMac239 and iMac239-∆D385, a marked 
increase in p27 Gag is detectable in CD8+ T cells (Right panel). 
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monocytes (CD16+, CD14+) or B cells (CD20+) was not observed (data not shown), 

although we note that culture conditions did not support expansion of these cell types. 

Collectively, these data indicate that both CD4-independent iMac239 and iMac239-

ΔD385 have expanded tropism on primary cells, specifically for CD8+ T cells.  

 

Evaluating use of alternative coreceptors by iMac239 and iMac239-∆D385. 

SIVmac239 and other SIVs have been well described to use coreceptors in 

addition to CCR5, including CXCR6, APJ, GPR1, GPR15, CCR2 and CCR8 (82–86). To 

determine if CD4-independent use of CCR5 by iMac239 and iMac239-∆D385 affected 

CD4-dependent or independent use of alternative coreceptors, a cell-cell fusion assay was 

used to assess fusion on target cells expressing rhesus CXCR6, APJ, GPR1, GPR15, 

CCR2 and CCR8 with or without rhesus CD4. In the presence of CD4, SIVmac239, 

iMac239, and iMac239-∆D385 exhibited some capacity to use CXCR6, GPR1 and 

GPR15, although levels of fusion were less than for CCR5 (Fig. 2-7A Left panel). 

However, in the absence of CD4, only iMac239 and iMac-∆D385 exhibited CD4-

independent fusion, and only on CCR5 (Fig. 2-7A Right panel). 

We also assessed infection of two CD4+, CCR5-negative cell lines, CEMx174 and 

HUT-78, previously shown to be permissive for SIVmac infection, most likely through 

their expression of GPR15 (86–91). In contrast to SIVmac239, both iMac239 and 

iMac239-ΔD385 were unable to replicate in these cell lines (Fig. 2-7B). Thus, while 

adapted for CD4-independent use of rhesus CCR5, these findings suggest that iMac239 

and iMac239-ΔD385, are strictly CCR5 tropic and unable to use alternative coreceptors 

for infection in the presence or absence of CD4. 
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B.

Figure 2-7: Use of alternative coreceptors by SIVmac239, iMac239, and 
iMac239-∆D385. (A) Fusion activity of the indicated Envs on rhesus coreceptors in 
the presence (Left panel) or absence (Right panel) of rhesus CD4 was assessed in a 
cell-cell fusion assay. In each panel luciferase activity was normalized to values for 
rhesus CCR5. Background fusion levels were subtracted prior to normalization. Data 
shown are the means of three experiments + S.E.M. (B) Replication of SIVmac239, 
iMac239, and iMac239-ΔD385 viruses in CD4+, CCR5- CEMx174 (Left panel) and 
HUT-78 (Right panel) cells. RT activity in culture supernatants was measured at the 
indicated time points. Results from a representative experiment are shown.
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DISCUSSION   

CD4 tropism is conserved among all primate lentiviruses and has been proposed 

to play a key role in protecting viruses from neutralizing antibodies that are sterically 

restricted from accessing the Env trimer once virions have bound to the cell surface (9, 

10). However, by focusing infection onto cells that are critical to host adaptive immune 

responses, CD4 tropism likely also exerts potent immunomodulatory effects that 

contribute to disease and/or viral persistence. Although CD4-independent viruses have 

been observed in vivo, particularly in nonhuman primate models of pathogenic SIV 

infection, they typically appear in the setting of highly immunocompromised hosts with 

advanced neurological or pulmonary complications (42, 56, 65) at sites where non-

lymphoid cells with little or no CD4 are infected. In rhesus macaques depleted of CD4 T 

cells with anti-CD4 antibodies prior to SIVmac infection, CD4-independent viruses 

rapidly appeared, in association with encephalopathy and macrophage infection (44, 51), 

indicating that this phenotype can readily emerge in vivo. Because CD4-independent 

viruses are characteristically neutralization sensitive, it is likely that they are strongly 

selected against during typical pathogenic infection (30, 46, 47). Interestingly, primary 

isolates of HIV-2, which is less pathogenic than HIV-1 (reviewed in (92)), have been 

reported to exhibit CD4-independence in vitro (57, 93). However, for HIV-1 (and as we 

show for SIVmac239) extensive passaging is required to derive CD4-independent viruses 

in vitro, indicating that for these viruses there are likely to be additional barriers to their 

emergence (27, 28, 32, 34, 35, 37, 45). Of note, CD4-independent Envs typically retain 

their CD4 binding site, and their infectivity is generally enhanced in the presence of CD4 

(28, 30, 44, 57). Thus, while CD4-independent viruses arising in vivo or in vitro provide 
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potentially useful tools to understand conformational changes associated with coreceptor 

engagement and viral entry (32, 33, 37, 38, 59), they have not been able to be applied to 

address questions of what role CD4 interactions play in pathogenesis and on host immune 

responses. 

In this report we describe the derivation and characterization of a CD4-

independent and truly non-CD4 tropic variant of SIVmac239 that lacks the ability to 

interact with CD4. A CD4-independent virus, iMac239, was first derived in vitro and 

shown to be highly competent in mediating fusion and infection of cells bearing rhesus 

CCR5 in the absence of CD4. Unlike SIVmac316, a macrophage tropic variant of 

SIVmac239 that was CD4-independent in cell-cell fusion assays (30, 42), the 

determinants for iMac239’s altered tropism resided solely within gp120, and this virus 

did not require a truncated cytoplasmic tail to exhibit this phenotype. Notably, after 

deletion of the codon for a highly conserved aspartic acid in the CD4 binding loop on 

gp120, shown for HIV-1 to be critical for CD4 binding, iMac239 remained fully 

infectious on CD4-negative cell lines expressing rhesus CCR5 and on primary peripheral 

blood lymphocytes. This mutation in parental SIVmac239 completely ablated its function 

in cell-cell fusion and infection assays. Moreover, whereas SIVmac239 and especially 

iMac239 were sensitive to neutralization by soluble CD4, iMac239 containing the ∆D385 

deletion was completely resistant, consistent with the view that CD4 binding for this 

virus was ablated or at least markedly reduced (Fig. 2-4).  

Among the 7 mutations in the iMac239 Env, 4 changes in gp120 were sufficient 

to confer CD4-independent infection of CCR5-expressing cells. A D178G in the iMac239 

V1/V2 loop was critical in that this change alone conferred CD4-independent fusion to 
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the SIVmac239 Env, and correction of this change alone ablated CD4-independent 

infection by a virus bearing the minimum set of gp120 mutations required for CD4-

independence. For HIV-1 and SIV, changes in V1/V2 are frequently associated with 

CD4-independence (28, 31–33, 41, 94–96) and/or an enhanced ability to infect cells that 

express low levels of CD4 (93, 97). Structural studies of HIV-1 soluble SOSIP timers 

(98–100) and cryo-electron microscopic analyses of virion-associated trimers have shown, 

in the absence of CD4, V1/V2 loops to be oriented towards the apex of the trimer, in 

contrast to their more lateral positioning upon CD4 activation (39). Given that soluble 

gp120, even in the absence of CD4, is thermodynamically favored to assume a CD4 

bound conformation as an apparent default structure (101) even though its conformation 

is likely restrained by the V1/V2 and V3 variable loops (99–101), changes in V1/V2 that 

perturb its quaternary interactions within or between adjacent protomers could favor the 

spontaneous opening of the trimer to a CD4 bound conformation and promote CD4-

independent function. Interestingly, although D178G alone enabled the SIVmac239 Env 

to fuse independently of CD4, SIVmac239 virus containing only this change was 

noninfectious on both CD4-positive and -negative cells. However, this Env could be 

rescued by iMac239’s H224Q mutation distal to the V1/V2 stem. Because the Env trimer 

has been modeled as a metastable structure with the potential to assume conformations 

that are either favorable or non-permissive for fusion (102, 103), we interpret these 

results to indicate that D178G, while necessary for CD4-independent fusion and entry, 

requires the H224Q to guide conformational changes towards a fusion-permissive rather 

than an inactive state, similar to that described for HIV-1 Envs after cold treatment (102) 

and/or small molecule CD4 binding site agonists (103–105).  
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As noted, it is likely that the enhanced neutralization sensitivity of CD4-

independent viruses results from their more open structure because their Env trimers 

assume conformations that typically only occur in the presence of CD4, exposing 

epitopes that are shielded on resting virions (39). In addition, CD4-induced epitopes that 

contribute to the coreceptor binding site and are highly immunogenic (9), are poorly 

formed in the absence of CD4 binding and inaccessible to antibodies on cell-bound 

virions. However these epitopes are targeted on CD4-independent viruses on which they 

are formed and exposed (37) or sampled more frequently in the absence of CD4 (106). As 

we demonstrated, iMac239, as well as its non-CD4 binding derivative, iMac239-∆D385, 

were globally neutralization sensitive to sera from SIVmac-infected animals and to 

monoclonal antibodies to CD4-induced and non-induced epitopes (Figs. 2-3 and 2-5). 

However, an Env containing only the iMac239 gp120 changes, while CD4-independent, 

remained highly neutralization resistant, similar to parental SIVmac239. In addition to 

indicating that CD4-independence and enhanced neutralization sensitivity can be 

dissociated, these findings also suggest that changes in gp41 that arose with iMac239’s 

CD4-independence contribute to its neutralization sensitivity. This finding is consistent 

with the model of “intrinsic reactivity” of the Env trimer proposed by Haim, et al. (102), 

in which changes in gp41 enhanced the spontaneous formation/exposure of the HR1 

coiled coil, decreasing the threshold for Env to transition upon activation from a high to a 

lower-energy state.  

As described, CD4-independent iMac239 virus, following deletion of aspartic 

acid 385, remained fully infectious on CCR5-expressing cell lines and on primary 

lymphocytes. Although the structure of the SIVmac gp120 has not been resolved at the 
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crystallographic level, for HIV-1, this residue forms a covalent bond with arginine-59 on 

human CD4 (corresponding to lysine-59 on rhesus CD4), and is highly conserved across 

nearly all HIV and SIV isolates ((8) and see Suppl. Fig. 2-1). While we cannot rule out 

the possibility that iMac239 containing this mutation maintained some low level 

interactions with CD4, the finding that it became completely resistant to soluble CD4 

while iMac239 was exquisitely sensitive, strongly supports the view that CD4 binding 

was markedly impaired (Fig. 2-4). We chose to introduce a deletion rather than a point 

mutation at this position to create a CD4-binding site mutant that would be less likely to 

revert in vivo in macaques. In vitro, when iMac239-∆D385 was serially passaged up to 

20 times in CD4+ SupT1/RhR5 cells, this mutation remained stable (not shown) 

indicating that loss of CD4 binding function, at least in cell lines, did not confer a major 

fitness cost during long-term propagation in vitro. 

In rhesus PBMCs cultured with T cell mitogens, SIVmac has been shown to infect 

CD4 effector and central memory T cells, consistent with expression of CCR5 on these 

cells and SIVmac’s highly efficient use of this coreceptor for entry (47, 107, 108). 

Although alternative coreceptors can be used by SIVs in vivo (82, 109), it is likely that 

levels of CCR5 expression are a key determinant of tropism and pathogenicity, given that 

sooty mangabeys, a natural host for nonpathogenic SIVsm infection, exhibit low CCR5 

expression on central memory CD4 T cells, likely accounting for sparing of this subset in 

the context of SIVsm infection (108, 110). Among peripheral blood cells stimulated with 

T cell mitogens, iMac239 with and without the ∆D385 deletion, exhibited an expanded 

host range that included CD8 T cells, most likely through their expression of CCR5 (Fig. 

2-6). We observed that 30 - 65% of CD8 cells in these cultures expressed CCR5 (not 
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shown), which was associated with infection of approximately 20% and 4% of CD3+, 

CD8+ T cells by iMac239 and non-CD4 tropic iMac239-∆D385, respectively, in contrast 

to <0.15% for SIVmac239. Adaptation of SIVmac239 for CD4-independent use of CCR5 

led to a reduced capacity to utilize alternative coreceptors (Fig. 2-7), suggesting that its 

expanded tropism in vitro was largely driven by CCR5 expression. Collectively, these 

findings clearly show that the tropism of SIVmac239 on primary cells can be altered and 

redirected from its exclusive infection of CD4+ target cells. Whether additional cell types 

such as NK, B cells, or monocytes can be infected by this virus remain to be determined. 

The ability to remove CD4 tropism from SIVmac creates new opportunities to 

assess the role of CD4 in pathogenesis. Non-human primate models of AIDS have clearly 

shown that during early SIV infection, CD4+ T cells that express CCR5 and reside in 

mucosal tissues are selectively and rapidly depleted (107, 111, 112), which is associated 

with a disruption in the epithelial barrier that contributes to microbial translocation and 

systemic immune activation (18, 25, 26, 113, 114). In addition, by focusing infection 

onto T cell subsets that provide help for adaptive immune responses, including Th1, Th17, 

and Tfh cells, it is likely that CD4 tropism has profound effects on antiviral immune 

responses, which are ultimately inadequate to contain viral replication and disease 

progression. Binding of gp120 to CD4 also has the potential to disrupt CD4’s physiologic 

interaction with HLA class-II on antigen presenting cells, which underlies T-cell 

immunologic helper functions. Although iMac239-∆D385 exhibited expanded cell 

tropism in vitro, its inability to selectively target CD4+ T cell subsets raises the possibility 

that T cell help for cytotoxic CD8 and CD4 cellular responses will be qualitatively or 

qualitatively altered and that B cell maturation and memory responses, which are 
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dependent on interactions with T follicular helper cells, may lead to improved antibody 

responses. Future studies that assess the quality of anti-SIV responses in the context of a 

CD4 sparing infection will provide new insights into pathogenesis and possibly inform 

interventions that can be directed to improve host immune responses to infection and 

vaccines. 
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Supplemental Figure 2-1: Amino acid sequence alignment of HIV-1, HIV-2, 
and SIV gp120. Shown is a region that for HIV-1 contributes to the CD4 binding 
site. Aspartic acid-368 for HIV-1, which is critical for CD4 binding (i.e., D-385 
for SIVmac239), is highlighted and highly conserved with the only exception 
being two SIVmnd isolates.
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Supplemental Figure 2-2: Replication of SIVmac239 and iMac239 viruses 
containing Envs with full length or truncated cytoplasmic tails. Replication of 
viruses containing the iMac239 p8cl18 env clone with a truncated or full length 
cytoplasmic tail (CT) are shown in CD4+ Sup/RhR5 (Left panel) and 
CD4- BC7/RhR5 cells (Right panel). SIVs with parental SIVmac239 Envs with and 
without the CT truncation were used as controls. RT activity in culture supernatants 
was measured at the indicated time points. Results from a representative experiment 
are shown.
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       10          20    30       40          50    60         70          
SIVmac239: MGCLGNQLLIAILLLSVYGIYCTLYVTVFYGVPAWRNATIPLFCATKNRDTWGTTQCLPDNGDYSEVALN
iMac239:   ----------------------------------------------------------------------
  
                       80          90    100       110        120    130        140
SIVmac239: VTESFDAWNNTVTEQAIEDVWQLFETSIKPCVKLSPLCITMRCNKSETDRWGLTKSITTTASTTSTTASA
iMac239:   ----------------------------------------------------------------------
   
                       150         160    170       180 190    200        210
SIVmac239: KVDMVNETSSCIAQDNCTGLEQEQMISCKFNMTGLKRDKKKEYNETWYSADLVCEQGNNTGNESRCYMNH
iMac239:   -------------------------------------G--------------------------------
     
                       220 230    240       250 260    270        280
SIVmac239: CNTSVIQESCDKHYWDAIRFRYCAPPGYALLRCNDTNYSGFMPKCSKVVVSSCTRMMETQTSTWFGFNGT
iMac239:   ------------Q---------------------------------------------------------
    
                       290         300    310       320 330    340        350
SIVmac239: RAENRTYIYWHGRDNRTIISLNKYYNLTMKCRRPGNKTVLPVTIMSGLVFHSQPINDRPKQAWCWFGGKW
iMac239:   --------------------------------------------------------Y-------------
    
                       360         370    380       390 400    410        420
SIVmac239: KDAIKEVKQTIVKHPRYTGTNNTDKINLTAPGGGDPEVTFMWTNCRGEFLYCKMNWFLNWVEDRNTANQK
iMac239:   ----------------------------------------------------------------------
     
                       430         440    450       460 470    480        490
SIVmac239: PKEQHKRNYVPCHIRQIINTWHKVGKNVYLPPREGDLTCNSTVTSLIANIDWIDGNQTNITMSAEVAELY
iMac239:   ------K---------------------------------------------------------------
     
                       500         510    520       530 540    550        560
SIVmac239: RLELGDYKLVEITPIGLAPTDVKRYTTGGTSRNKRGVFVLGFLGFLATAGSAMGAASLTLTAQSRTLLAG
iMac239:   ----------------------------------------------------------------------
      
                       570         580    590       600 610    620        630
SIVmac239: IVQQQQQLLDVVKRQQELLRLTVWGTKNLQTRVTAIEKYLKDQAQLNAWGCAFRQVCHTTVPWPNASLTP
iMac239:   ------------T---------------------------------------------------------
      
                       640         650    660       670 680    690        700
SIVmac239: KWNNETWQEWERKVDFLEENITALLEEAQIQQEKNMYELQKLNSWDVFGNWFDLASWIKYIQYGVYIVVG
iMac239:   ------------------------------------------I---------------------------
      
                       710         720    730       740 750    760        770
SIVmac239: VILLRIVIYIVQMLAKLRQGYRPVFSSPPSYFQQTHIQQDPALPTREGKERDGGEGGGNSSWPWQIEYIH
iMac239:   ----------------------------------------------------------------------
       
                       780         790    800       810 820    830        840
SIVmac239: FLIRQLIRLLTWLFSNCRTLLSRVYQILQPILQRLSATLQRIREVLRTELTYLQYGWSYFHEAVQAVWRS
iMac239:   -------------------------------------------------M--------------------
       
                    850         860    870       880 
SIVmac239: ATETLAGAWGDLWETLRRGGRWILAIPRRIRQGLELTLL*
iMac239:   ----------------------------------------

Supplemental Figure 2-3: Alignment of Env sequences for SIVmac239 and 
iMac239. Cleavage sites for gp120 and gp41 are indicated. Stop codons are 
denoted by asterisks (*). A stop codon at position 734 in the gp41 cytoplasmic tail, 
acquired as expected (76) during in vitro passaging of iMac239 in human T cell 
lines and present in the p8cl18 env clone, was repaired to create the iMac239 Env. 
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Supplemental Figure 2-4: Flow cytometry gating strategy for analysis of SIV-
infected PBMCs. Monoclonal antibodies included those reactive with CD3, CD4, CD8, 
CD20, CD14, CD16 and SIV p27 Gag. (A) Gating strategy is shown for CD4+ and 
CD8+ T cells. Shown are cytograms for uninfected cells. (B) A representative cytogram 
of uninfected cells is shown to demonstrate negligible staining for p27 Gag. 
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Pathogenesis and Immunogenicity of a Novel Variant of SIVmac239 

Lacking CD4 Tropism 
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Abstract 

CD4 tropism of primate lentiviruses has been proposed to disrupt host antiviral 

immune responses and to contribute to persistent viral infection. To explore how immune 

responses might be different in the context of a CD4-sparing infection, we derived a 

CD4-independent, CCR5-tropic variant of SIVmac239 that lacked a functional CD4 

binding site. This virus, iMac239-∆D385, was inoculated into four rhesus macaques 

lacking controlling MHC alleles. iMac239-∆D385 generated a robust acute infection, 

however CD4+ T cell populations in blood and gut remained stable. Following the acute 

peak, plasma RNA rapidly decreased to <100 copies/ml, correlating with the appearance 

of high and persisting neutralizing antibody titers to Tier-1 SIV strains. At ≥300 dpi 

iMac239-∆D385-infected animals and four naïve, Trim5α-matched controls were 

challenged intrarectally, weekly for up to ten weeks with SIVsmE660. All four controls 

became infected by challenge 2; three iMac239-∆D385-infected animals became infected 

(two at challenge 2, one at challenge 7), and one remained uninfected. When factored by 

Trim5α, iMac239-∆D385 animals exhibited a log reduction in peak SIVsmE660 viral 

loads compared to their matched controls. Three out of four E660-infected controls lost 

CD4+ T-cells in lamina propria, while two of three SIVsmE660-infected iMac239-∆D385 

animals maintained normal CD4+ T cells up to 10 weeks post infection. Finally, two of 

three SIVsmE660-infected iMac239-∆D385 animals exhibited an expansion of breadth 

and increase in magnitude of their humoral response post challenge and were able 

neutralize 100% of a Tier-2 SIVsmE660 strain. As the first model of a non-CD4 tropic 

primate lentiviral infection, this system may provide new insights into qualitative and/or 
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quantitative augmentation of host anti-viral immune responses and perhaps serve as a 

novel prime for immunization protocols. 
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Introduction 

 Pathogenic simian immunodeficiency virus infection of non-natural primate hosts 

recapitulates many of the characteristics of human immunodeficiency virus type 1 (HIV-

1) infection in humans (1, 2) and thus is a valuable model in which to study the effects of 

various perturbations to the virus-host interaction. Similar to HIV-1, SIV utilizes the CD4 

and CCR5 receptors for entry into CD4+ T cells (3–5). During the acute phase of 

pathogenic infection, the host experiences high plasma viral loads that coincides with a 

sharp decline in CD4+ CCR5+ T cells in the gut-associated lymphoid tissue (GALT) (6–

8). As the host adaptive immune system develops SIV specific responses, the viral load 

drops to a set point level that is lower than the acute phase, and this is maintained 

throughout the chronic phase of infection, contributing to a persistent state of immune 

activation (9–11). Notably, the magnitude of the set point can be influenced by certain 

host factors, including MHC Class I alleles (12–14). Although peripheral CD4+ T cells do 

not undergo the dramatic depletion seen in the GALT, they gradually decline throughout 

the chronic phase until the ability of the host to regenerate new CD4+ T cells is 

exhausted, resulting in the collapse of the immune system and development of clinical 

AIDS (15, 16). A hallmark feature of HIV-1 infection of humans and SIV infection of 

non-natural hosts is the inability of the host immune response, cellular or humoral, to 

outpace viral evolution and control viral replication. 

 The critical role of CD4+ T cells as mediators of adaptive immunity means that 

their depletion during HIV-1 and SIV infection has dire consequences for the host and its 

ability to mitigate pathogenesis. Various subsets of CD4+ T cells contribute to both arms 

of adaptive immunity, including Th1 cells that stimulate CD8+ CTL development and 

87



www.manaraa.com

memory, Th17 cells that maintain the protective barrier at mucosal surfaces, T follicular 

helper cells (Tfh) that contribute to B cell development, and T-regulatory cells (17–24). 

Recent work has highlighted that Tfh cells are infected in large numbers, resulting in 

functional disruptions that have been implicated in B cell dysfunction (25–30). 

Additionally, it has been suggested that Tfh cells within germinal centers may serve as a 

viral reservoir (31) in addition to resting memory CD4+ cells and macrophages (32–34). 

Irrespective of viral infection of CD4+ T cells and the resulting consequences, the binding 

between the viral gp120 protein and CD4 has the potential to block MHC-II interactions 

with antigen presenting cells while also generating aberrant signaling, further disrupting 

CD4 dependent immune responses (35–37). Therefore, the unique ability of primate 

lentiviruses to bind the CD4 molecule, thereby targeting infection to CD4 cells could 

serve many roles in sustaining viral replication while simultaneously disrupting host 

antiviral immune responses. 

While the majority of primate lentiviruses studied are CD4 tropic, there are a few 

exceptions. Previously described CD4-independent (CD4i) SIVs were originally 

identified as macrophage tropic strains and were then tested for their ability to enter cells 

with low levels, or in the absence, of CD4 in vitro (38–41). The extent to which these 

viruses could use the coreceptor alone for entry was largely assessed in the context of 

Env only based assays, including cell-cell fusion and pseudotype entry assays (39, 41, 42) 

in which Envs often had a truncated cytoplasmic tail as a result of passaging in human T 

cell lines (43). The presence of this tail truncation is significant because it results in an 

increase of Env surface expression (44), thereby increasing overall rates of entry and 

enhancing CD4-independence (43, 45, 46). Rarely were these Envs tested for CD4-
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independent replication as infectious molecular clones in CD4-negative cell lines. It is 

also important to note that based on sequence analysis, the previously described CD4i 

SIV Envs have intact CD4 binding sites and thus presumably will still bind CD4 and 

utilize it for entry if it is available (40, 47, 48). Additionally, it has been shown that a 

CD4-independent HIV-1 strain exhibits faster fusion kinetics in the presence of CD4, 

suggesting that this class of virus, while capable of CD4-independent entry, will continue 

to use CD4 for increased entry efficiency (49). 

 We previously derived a CD4-independent variant of the pathogenic CD4-

dependent, CCR5-tropic SIVmac239 (Chapter 2). This novel CD4i variant, termed 

iMac239-ΔD385, can efficiently use rhesus CCR5 as a sole mean of entry in a CD4-

negative cell line and is also able to infect CD4- CD8+ T cells in RhPBMC cultures. We 

identified a minimum set of Env mutations that impart CD4-independence and showed 

that a single mutation in gp120 was able to confer CD4-independent fusion to the 

SIVmac239 Env, but that this mutation in the context of a replication competent viral 

clone resulted in a severe fitness defect, suggesting a disrupted trimer conformation. We 

have also shown that this Env, unlike SIVmac239, is sensitive to neutralization by 

monoclonal antibodies targeting epitopes across gp120. Finally, our data showed that the 

iMac239-ΔD385 Env is insensitive to inhibition by sCD4, suggesting that binding of this 

Env is significantly reduced or ablated, making this a truly CD4-independent strain. 

To study how the interactions between the virus and the host might be altered in 

the context of a CD4-sparing infection, we inoculated four rhesus macaques that were 

negative for MHC I controlling alleles with molecularly cloned iMac239-ΔD385. We 

observed that in all four animals acute replication of iMac239-ΔD385 was similar to 
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what has been reported for SIVmac239, however there was a delay to the time of acute 

peak (50–53). In tissues, we observed an expansion of cell targets beyond CD3+ T cells, 

including an as yet unidentified cell type, and infection of macrophages at least two 

weeks earlier that what has been reported for SIVmac239 infection in vivo (54). 

Additionally we found that iMac239-ΔD385 infected cells were predominately located in 

the medulla, rather than the cortex, of the lymph node during the acute phase. Somewhat 

surprisingly, although macrophage tropic strains capable of CD4-independent infection 

are often associated with viral replication in the brain and central nervous system (CNS) 

pathologies (41, 55–57), we did not observe significant viral load in the cerebrospinal 

fluid (CSF) or any signs of clinical neuropathies in the four animals. 

After the acute peak, all four animals quickly controlled iMac239-ΔD385 

replication to undetectable levels; this viral control was sustained for up to 600 days post 

infection. All animals maintained their CD4+ and CD8+ T cells in the periphery and 

lamina propria throughout the acute and chronic phases of infection. Utilizing single 

genome amplification (SGA) we amplified and sequenced 30 viral amplicons from each 

animal at peak viremia and showed that in all four animals the mutations in the inoculum 

were maintained and in three of four animals no additional mutations became fixed in the 

viral swarm.  All animals displayed high and sustained neutralizing antibody responses as 

well as polyfunctional CD4+ and CD8+ T cell responses. 

Based on the robust immune responses garnered by iMac239-ΔD385 infection, 

we tested whether these responses would be sufficient to protect the animals from a 

pathogenic challenge. After weekly intrarectal inoculations with SIVsmE660 we 

observed that while all four naïve control animals were infected by the second challenge, 
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two iMac239-ΔD385 animals were infected on the second challenge, one on the seventh 

challenge, and one remained uninfected by SIVsmE660 after ten challenges. iMac239-

ΔD385 displayed a trend towards lower acute viral peaks and delayed time to peak, 

however this study was not powered for statistical significance. Strikingly, two of three 

SIVsmE660 infected iMac239-ΔD385 animals displayed an enhanced humoral response 

after the challenge, resulting in the first reported case of 100% neutralization of the 

SIVsmE660.2A5-IAKN strain.  

Taken together these results, albeit with small numbers of animals, indicate that 

SIV Env binding to CD4 is not required for robust in vivo replication and that CD4+ T 

cells can, in fact, be spared during the course of infection. Additionally, these findings 

suggest that by redirecting viral targeting of CD4+ T cells, the host is able to mount 

immune responses that are able to control viral replication of a novel variant of 

SIVmac239. While these responses were ultimately not able to protect against a 

pathogenic challenge in three of four animals, animals with favorable Trim5α alleles 

appeared to have an improved outcome post-challenge compared to matched controls, 

and the primary iMac239-ΔD385 infection may have served as a novel prime to improve 

humoral responses post challenge. 

 

Methods 

Animals, Viral Inoculations, and Sample Collection  

(Pyone Aye, Andrew Lackner, TNPRC) 

Four rhesus macaques were inoculated intravenously (i.v.) with 300 TCID50 iMac239-

ΔD385 (n=4). These four animals, along with four naïve rhesus macaques were 
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subsequently inoculated intrarectally (i.r.) with 5,000 TCID50 SIVsmE660 (n=8). All 

animals were negative for MHC I alleles Mamu A*01, B*08, and B*17 and were 

maintained at the Tulane National Primate Research Center (TNPRC). The iMac239-

ΔD385 viral stock was produced in 293T cells transfected with plasmids containing full-

length proviral DNA. The SIVsmE660 stock was a viral swarm supplied by Dr. Vanessa 

Hirsch and was previously passaged in pigtail macaque PBMCs (58). Viruses were 

quantified by determining TCID50 on rhesus macaque PBMCs. Prior to use, all animals 

tested negative for antibodies to SIV, STLV and Type D retrovirus and by PCR for Type 

D retrovirus. Animals were anesthetized with ketamine hydrochloride or isoflurane for 

collection of multiple blood samples, small intestinal biopsies (endoscopic duodenal 

pinch biopsies or jejunal resection biopsies) Animals were euthanized if they exhibited a 

loss of more than 25% of maximum body weight, anorexia for more than 4 days or major 

organ failure or medical conditions unresponsive to treatment. 

 All animals were maintained at TNPRC in accordance with standards of the 

Association for Assessment and Accreditation of Laboratory Animal Care and the “Guide 

for the Care and Use of Laboratory Animals” prepared by the National Research Council. 

The TNPRC Institutional Animal Care and Use Committee approved all studies. 

 

Infection of PBMCs 

Purified peripheral blood mononuclear cells (PBMCs) from rhesus macaques stored at -

140°C were thawed and stimulated for 3 days with 5 μg/mL ConA at a concentration of 

106 cells/mL in RPMI Complete media. Cells (5 x 106) were then inoculated with viruses 

(125 ng of p27 Gag) and media supplemented with IL-2 (100 IU/mL). After 24hrs, cells 
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were washed to remove the viral inoculum and cultured in fresh RPMI Complete media 

supplemented with IL-2 (100 IU/mL). Viral replication was monitored by p27 Gag 

expression. 

 

Quantification of viral load in plasma 

(Yuan Li, Mike Piatak, Jeff Lifson, NCI) 

Plasma viral loads were determined at various times using a reverse transcription-

polymerase chain reaction (RT-PCR) assay with a limit of detection between 15 and 60 

SIV RNA copies/mL (59). To discriminate between iMac239-ΔD385 and SIVsmE660 

replication post challenge gag sequence analysis was performed as previously described 

(60). 

 

Cell-associated SIV DNA and RNA  

(Yuan Li, Mike Piatak, Jeff Lifson, NCI) 

Total DNA and RNA was extracted from lymph node mononuclear cell specimens, and 

DNA-PCR or RT-PCR for SIV gag sequences was performed as previously described 

(60). 

Lymphocyte isolation from intestinal tissues 

(Faith Schiro, Pyone Aye, TNPRC) 

Intestinal cells were collected by endoscopic pinch or jejunal resection biopsies of the 

small intestine and isolated using EDTA/collagenase digestion and percoll density-

gradient centrifugation as previously described (61–64).  
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Immunophenotyping of cells 

(Workineh Torben, Bapi Pahar, TNPRC) 

Immunophenotyping of cells was performed on isolated lamina propria lymphocytes 

(LPLs) and anti-coagulated whole blood using antibodies reactive with: CD3 (SP34), 

CD8 (SK1 or SK2), CD4 (L200), and CCR5 (3A9) all from BD Biosciences, San Jose 

CA. Viability was determined using Live/Dead stain (L34957) (Life Technologies, Grand 

Island, NY). Protocols for performing immunophenotyping have been described 

previously (65). In brief, cells were gated first on singlets, lymphocytes, followed by live 

cells and then on CD3+ T cells and subsequently on CD3+ CD4+ and CD3+ CD8+ T cell 

subsets. Flow cytometry data were analyzed using Flowjo Software version 9.1 (TreeStar 

Inc., Ashland, OR). 

 

Intracellular Cytokine Analysis 

(Workineh Torben, Bapi Pahar, TNPRC) 

Intracellular cytokine analysis of SIV-specific CD4+ and CD8+ peripheral blood and 

lamina propria lymphocytes was performed on all four iMac239-ΔD385 infected animals 

at various time points, as previously described (66, 67). Briefly, cells were stimulated 

with SIV peptides (Env, Gag, and Pol, NIH AIDS Research & Reference Reagent 

Program) and then brefeldin A (Sigma) was added. Media was used as a negative control 

and PMA/Ionomycin was used as a positive control. Cells were stained with anti-CD3 

(SP34), -CD4 (L200), -CD8 (5H10) and a viability stain (L34957), then washed, 

permeabilized and stained with antibodies to: IL2 (MQ1-17H12), IFNγ (4S.B3), TNFα 

(MA611), CD107α (B-T47), and IL17 (eBio64DEC17) (BD Biosciences, San Jose, CA). 
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Cells were fixed in stabilizing fixative buffer (BD Biosciences, San Jose, CA) and 

analyzed on a Becton Dickinson LSR II flow cytometer. 

 The gating strategy was similar to the immunophenotyping described above. The 

percentages of CD107α, IL17, IFNγ, TNFα, and IL2 positive responses in each subset as 

well as negative or positive controls were assessed using Flowjo software, version 9.1 

(TreeStar).  

 

CD8+ T cell depletion 

(Pyone Aye, Andrew Lackner, TNPRC) 

CD8+ T cell depletion protocols were performed on two iMac239-ΔD385 infected 

animals (IC30 and II40) at 300 days post infection. Animals received the anti-CD8 

antibody MT807R1, provided by the Nonhuman Primate Reagent Resource (Boston, 

MA) (68). Antibody was administered subcutaneously (s.c.) at 10mg/kg on day 0 and i.v. 

at 5mg/kg on days 3, 7, and 10. CD8+ T cells in blood were monitored by flow cytometry, 

as described above. 

 

MHC and Trim5α typing of rhesus macaques 

(Pyone Aye, Andrew Lackner, TNPRC) 

MHC class I genotyping was carried out by the Rhesus Macaque MHC Typing Core 

facility at TNPRC. The Trim5α genotypes of the eight rhesus macaques were determined 

by Dr. Welkin Johnson (Boston College) as previously described (69). 

 

Assays for neutralizing antibodies 
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(Celia LaBranche, David Montefiori, Duke Central Reference Laboratory) 

Neutralizing antibody responses were determined on pseudotyped viruses produced in 

293T cells (70) using TZM-bl cells expressing CD4 and CCR5. All assays were 

conducted in triplicate as described previously (71). Viral Envs used in the neutralization 

panel included SIVmac251.6 (72), SIVsmE660/BR-CG7G-IR1(73, 74), SIVsmE660-

2A5.VTRN (neutralization sensitive), and SIVsmE660-2A5.IAKN (neutralization 

resistant)(75). 

 

Confocal Microscopy 

(Xavier Alvarez-Hernandez, TNPRC) 

Double confocal microscopy was performed to colocalize SIV p27 Gag protein with cell 

type-specific markers to determine the immunophenotype of infected cells, as previously 

described (76). Immunofluorescent labeling of T cells (rabbit polyclonal to CD3, Biocare 

Medical, Concord, CA, CD2), macrophages (mouse IgG1 monoclonal to CD68, Dako, 

CD163, LN5), dendritic cells (CD123, CD209), and B cells (CD20). After incubation 

with the primary antibodies (anti-CD3, anti-CD68, or anti-p27) and subsequent washes, 

the appropriate species-specific secondary antibodies were applied; AlexaFluor 488 or 

633 conjugated goat anti-rabbit or goat anti-mouse IgG1 (Invitrogen, Carlsbad, CA). 

Confocal microscopy was performed using the sequential mode to capture separately the 

fluorescence from the different fluorochromes (Leica Microsystems, Exton, PA). NIH 

Image v1.62 and Adobe Photoshop v7 software were used to correct the colors collected 

in the different channels: Alexa 488 (green, Alexa 568 (red), Alexa 633 (blue) and 

differential interference contrast (DIC; grey scale). 
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Single Genome Amplification (SGA) Analysis 

(A. Swanstrom; Brandon Keele, NCI) 

SGA analyses were performed on plasma samples from all four iMac239-ΔD385 infected 

animals at 17 dpi. The entire env gene was sequenced using a limiting dilution PCR to 

insure that only one amplifiable molecule was present in each reaction, as previously 

described (65, 74). Sequence alignments were generated with the Macvector software and 

presented as highlighter plots (www.hiv.lanl.gov). 

 

Statistical Analysis 

All statistical analyses were performed using GraphPad Prism v5.0c (GraphPad Software, 

Inc, La Jolla, CA). 

 

Results 

Infection of rhesus macaques with iMac239-ΔD385 

 Four rhesus macaques that were negative for MHC I controlling alleles (Mamu 

A*01, B*08, B*17) (12–14) were intravenously inoculated with a 300 TCID50 dose of 

iMac239-ΔD385 or iMac239-ΔD385 Q739 (2 animals each). The Q739 mutation occurs 

in the cytoplasmic tail of iMac239-ΔD385 Env, and while it is a noncoding change in 

Env, it results in an Arg to Lys change in the second exon of Tat (at AA position 103) 

and a Gly to Arg change in the second exon of Rev (at AA position 29). There was no 

obvious effect of this mutation on in vitro replication in rhesus PBMCs (Suppl. Fig. 3-1). 

However, in the interest of studying a model in which any changes in phenotype are due 
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only to alterations in Env, we inoculated two rhesus macaques with this corrected virus, 

iMac239-ΔD385 Q739 (HV24 and IK16) in addition to two animals infected with 

iMac239-ΔD385 (IC30 and II40). 

All four animals exhibited an acute plasma viral peak of 105-107 copies vRNA/mL 

(Fig. 3-1). The two animals infected with iMac239-ΔD385 Q739 had the lowest acute 

peak viral load, however given the small number of animals in this study it is unclear 

whether this was a result of the correction of the mutation or natural variability between 

rhesus macaques. In all subsequent analyses there were no overt differences between 

iMac239-ΔD385 and iMac239-ΔD385 Q739 infected animals. The acute viral peak in all 

animals occurred at 17 days post infection (dpi), which is delayed from the historical 

peak of SIVmac239, usually occurring at 10-14 dpi (50–53). Following the acute peak, 

all four animals quickly controlled viral replication to 102-103 vRNA copies/mL by 42 

dpi, and by 150 dpi all animals had controlled plasma virus to undetectable levels (<60 

vRNA copies/mL).  This viral control was maintained throughout chronic infection (≥300 

dpi) (Fig. 3-1). These data indicate that while this novel CD4-independent strain is fit and 

is capable of replicating acutely at wildtype levels, the host immune response is able to 

quickly control viral replication.  

  

Evolution of iMac239-ΔD385 in vivo 

We considered the possibility that the iMac239-ΔD385 Env may evolve in vivo to 

improve its fitness, regain a functional CD4 binding site, or evade immune pressure given 

its neutralization sensitivity. To test this hypothesis, we performed single genome 

amplification and sequencing on plasma viral RNA at peak viral infection at 17 dpi. In 
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Figure 3-1:  Viral loads in iMac239-ΔD385 infected rhesus macaques. Plasma viral 
RNA levels were measured using RT-PCR. The first 300 days of infection are shown.
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three of four animals there was no consensus evolution of the viral Env (Fig. 3-2). The 

few mutations that were observed appeared to be random or due to APOBEC3G 

(reviewed in (77)) and none of them became fixed in the viral population. The fourth 

animal, IK16, showed fixation of a single mutation in 40% of the 30 viral clones sampled 

(Fig. 3-2).  This mutation, L782P, occurs within a putative MHC Class II epitope for the 

MHC II allele DRBW*201 (78).  MHC II genotyping of this macaque revealed that it 

carried the DRBW*201 allele. The presence of this allele, coupled with the observation 

that this animal had the lowest acute viral load (105 vRNA copies/mL, Fig. 3-1) of the 

four animals suggested that this animal was exerting immune pressure on the virus 

through an MHC Class II mechanism.  Further investigation is required to assess this 

possibility. 

Our sequencing analysis revealed that all four animals retained the original 

iMac239-ΔD385 mutations, including the ΔD385 within the CD4 binding site.  This 

suggests that the inoculum was capable of robust in vivo replication and that the virus did 

not reacquire CD4 dependence during the acute phase. 

 

CD4+ and CD8+ T cell population dynamics in iMac239-ΔD385 infected animals 

Given that we believed iMac239-ΔD385 would not selectively target CD4+ T 

cells, it was important to monitor the CD4+ T cell populations in the periphery and lamina 

propria. All four animals maintained their CD4+ T cell populations in both compartments 

with no significant loss of CD4+ T cells (Fig. 3-3A). This is in striking contrast to 

SIVmac239 infection in which animals typically lose up to 90% of CD4+ T cells in the 

lamina propria during the acute phase (7, 65, 79). 
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Figure 3-2: Viral evolution of envs from iMac239-ΔD385 infected rhesus macaques. 
Highlighter nucleotide sequence analysis (www.hiv.lanl.gov) for animals IC30, II40, 
HV24, and IK16. Highlighter sequence plots show individual nucleotide polymorphisms 
between each amplicon sequence and the 
iMac239-ΔD385 reference sequence.
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Figure 3-3: CD4+ and CD8+ T cell populations in iMac239-ΔD385 infected rhesus 
macaques. (A) Percentage of pre-infection CD4+ T cells in blood (Left panel) and in 
lamina propria (Right panel). (B) Percentage of pre-infection CD8+ T cells in blood 
(Left panel) and in lamina propria (Right panel).
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Our previous work had shown that iMac239-ΔD385 was capable of infecting 

CD8+ T cells in vitro (Chapter 2), thus we hypothesized that CD8+ T cells could also be 

infected in vivo. In fact, we observed no significant loss of CD8+ T cells in the periphery 

or lamina propria throughout the first 100 days of infection (Fig. 3-3B).  

Taken together, these findings indicate that iMac239-ΔD385 is either not 

infecting a significant proportion of CD4+ or CD8+ T cells, or if it is, is not causing the 

death of these cell types. It also suggests that these two key components of cellular 

immunity are available to contribute to host control of viral replication. 

 

Cellular tropism and anatomic distribution of iMac239-ΔD385 infection 

 The CD4-independent phenotype of iMac239-ΔD385, and our previous finding of 

an expanded cell tropism in vitro, raised the possibility of infection of alternative (non-

CD4+) cells in vivo. We performed confocal microscopy on tissues from infected animals 

at peak infection to gain a better understanding of which cell types were infected during 

acute iMac239-ΔD385 infection. Using colabeling for p27 Gag expression and various 

cellular markers, we observed infection of CD3+ T cells, CD68+ macrophages, and an as 

yet unidentified cell type that is CD3-, CD2-, CD68-, CD163-, LN5-, DR-, CD123-, 

CD209-, CD20-. All three infected cell types were seen in the lymph node and lamina 

propria at days 7 and 14 post infection (Fig. 3-4A and B).  

 In addition to an expanded cellular tropism in vivo, we also observed an alteration 

in the anatomic distribution of infected cells within the lymph node during the acute 

phase. In contrast to SIVmac239 infection, in which infection in the lymph node is 

concentrated in the T cell rich cortical region of the lymph node around germinal centers 
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A. B.

C.

Figure 3-4: Tropism and distribution of iMac239-ΔD385 infection in tissues. 
Staining of lamina propria at day 7 (A) and lymph node at day 14 (B) from one 
representative animal. SIV p27 Gag+ cells are stained in green, CD3+ T cells are 
stained in red, and CD68+ macrophages are shown in blue. p27 Gag+ CD3+ cells are 
denoted by yellow arrows, p27 Gag+ CD68+ cells are denoted by blue arrows, and p27 
Gag+, CD3-, CD68- cells are denoted by green arrows. (C) Staining of a lymph node 
from one representative animal at peak infection. Blue indicates DAPI staining for 
nuclear DNA, red indicates macrophage and dendritic cells in the medulla of the lymph 
node, green staining indicates p27 Gag+ cells. Inset shows a higher magnification of 
p27 Gag+ cells in the medulla of the lymph node.
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(31, 80), tissues from iMac239-ΔD385 infected animals showed the vast majority of 

infected cells present in the medulla of the lymph node (Fig. 3-4C). These data show a 

clear diversification in the type of cell targeted and the location of replication during 

iMac239-ΔD385 in vivo infection. 

 

Depletion of CD8+ T cells to assess their contribution to viral control 

To determine the mechanism of viral control, an α-CD8 mAb was administered to 

animals IC30 and HV24 to deplete peripheral CD8+ T cells at 300 dpi (68). Both animals 

experienced a total loss of peripheral CD8+ T cells for 30 to 50 days (Fig. 3-5A).  

Concurrent with the loss of CD8+ T cells, both animals exhibited a low and transient viral 

peak on the order of 102 vRNA copies/mL (Fig. 3-5).  Plasma viral replication was once 

again controlled to undetectable levels upon the reemergence of CD8+ T cells in the 

periphery. These data are in contrast to other models of control where depletion of CD8+ 

T cells results in rebound viremia that replicates at levels similar in magnitude to the 

acute peak (79, 81–84). Based on these findings we can not rule out the CD8+ T cell 

response as a mechanism of viral control in this model, however it would appear that 

another mechanism, likely the humoral response, is a major factor contributing to host 

control of the virus (discussed in further detail below).  

 

Functionality of CD8+ and CD4+ T cells 

 Based on our observation that CD4+ and CD8+ T cell populations were preserved 

in all four animals, we tested the functionality of both cell types in the blood and lamina 

propria at 86 weeks (IC30 and II40) or 37 weeks (HV24 and IK16) post infection.  As 
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Figure 3-5: CD8+ T cell depletion in two iMac239-ΔD385 infected rhesus 
macaques. (A) Percentage of peripheral CD8+ T cells and plasma viral loads in 
animals IC30 (Left panel) and II40 (Right panel) during the CD8+ T cell depletion. (B) 
Plasma viral loads for animals IC30 and II40 over 600dpi, including the CD8+ T cell 
depletion are shown.
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markers of functionality we assessed T cell populations’ ability to express the cytokines 

CD107α, IFNγ, IL-2, IL-17, and TNFα (22, 85, 86). All animals exhibited polyfunctional 

CD8+ T cell responses in both PBMCs and LPL, although to varying degrees (Fig. 3-6A).  

Polyfunctional CD4+ T cells were also observed in all four animals in both PBMC and 

LPL (Fig. 3-6B). Interestingly, of the five cytokines assayed, the degranulation cytokine 

CD107α (85) was most commonly expressed among CD8+ and CD4+ T cells. The 

presence of both polyfunctional CD8+ and CD4+ T cells is notable since GALT CD4+ T 

cells are typically depleted during pathogenic infection (7, 8). 

 

Neutralizing antibody responses 

 Throughout the course of iMac239-ΔD385 infection we monitored the humoral 

response by periodically testing the ability of sera to neutralize autologous, homologous, 

and heterologous strains of SIV. We have previously shown that in contrast to parental 

SIVmac239, iMac239-ΔD385 is highly sensitive to neutralization by sera from SIV-

infected macaques and to anti-SIV Env monoclonal antibodies (Chapter 2). We found 

that the autologous (iMac239) neutralizing antibody response appeared rapidly, 

coinciding with the decline in plasma viral load (Fig. 3-7A). This response peaked at an 

average ID50 on the order of 1:100,000 starting at day 42 then declined slightly and was 

maintained at an average ID50 on the order of 1:10,000 throughout the chronic phase, 

even in the absence of detectable plasma viral load. 

 The kinetics of the homologous (SIVmac251.6) and heterologous 

(SIVsmE660/BR-CG7G-IR1) neutralizing antibody responses were similar to that of the 

autologous response, but the magnitude was approximately one log lower (Fig. 3-7B and 
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Figure 3-6: CD8+ and CD4+ T cell responses in iMac239-ΔD385 infected rhesus 
macaques. Polyfunctional responses were quantified for CD8+ (A) and CD4+ (B) T 
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Figure 3-7: Neutralization activity in serum from iMac239-ΔD385 infected rhesus 
macaques. Neutralization of iMac239 (A), SIVmac251.6 (B), and 
SIVsmE660/BR-CG7G-IR1 (C) pseudotype viruses by sera from all four animals over 
the course of infection. Arrow indicates the time of CD8+ T cell depletion and transient 
reemergence of virus resulting in a concurrent boost of antibody responses.
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C). In the two animals that underwent a CD8+ T cell depletion at 300 dpi, IC30 and II40, 

the antibody responses against all strains tested were transiently boosted with the 

reemergence of virus (Fig. 3-7, indicated by arrows). All three strains tested, iMac239, 

SIVmac251.6, and SIVsmE660/BR-CG7G-IR1 are considered Tier 1, neutralization 

sensitive strains (72, 73). Neutralization of more resistant, Tier 2 SIV strains was not 

observed, nor was any neutralization seen for the highly resistant parental SIVmac239 

(data not shown). 

 Taken together, these data show that iMac239-ΔD385 infection resulted in a high 

and sustained neutralizing antibody response to Tier 1 strains, which was maintained 

even in the absence of detectable plasma viral load. This finding would suggest that viral 

replication is occurring in the tissues and thereby continually priming the antibody 

response, or that a robust memory response developed during the acute phase of 

infection. The latter possibility is particularly intriguing given the rarity of iMac239-

ΔD385 infected cells in and around lymph node germinal centers during acute infection, 

and the probable sparing of Tfh cells, which contribute to the generation of long lived 

plasma B cells (reviewed in (20)).  

 

Viral replication in lymph node 

 After observing that plasma viral loads were undetectable for over 200 days in all 

four animals we wondered whether virus was still replicating in tissues, if it was 

completely latent, or if it had been cleared by the host immune response. To assess the 

viral load in tissues we amplified viral DNA and RNA from lymph node mononuclear 

cells at 86 weeks (IC30 and II40) or 37 weeks (HV24 and IK16) post infection. We found 
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extremely low levels of both viral DNA and RNA at each time point, on the order of one 

copy of DNA or RNA per 100,000 cells (Table 3-1). This amount of viral RNA in lymph 

node is approximately 1,000 times less than what has been reported for SIVmac239Δnef, 

the first live attenuated SIV (87). These results indicate that iMac239-ΔD385 has not in 

fact been cleared by the host immune response, but is replicating at extremely low levels 

in the lymph node during the chronic phase of infection. 

 

Preliminary assessment of iMac239-ΔD385 as a live attenuated vaccine 

 Given the magnitude and longevity of the neutralizing antibody response, in 

conjunction with both polyfunctional CD4+ and CD8+ T cell responses, we hypothesized 

that iMac239-ΔD385 may serve as a live attenuated vaccine and protect against a 

pathogenic challenge. We chose the SIVsmE660 swarm for a challenge stock because it 

would serve as a heterologous challenge and contains a mixture of neutralization 

sensitive and neutralization resistant strains (73). The four iMac239-ΔD385 infected 

animals were genotyped for their Trim5α alleles since these can have an impact on the 

acquisition of SIVsmE660 as well as viral replication (69, 88–90). Animals IC30 and 

HV24 were TFP/TFP, corresponding to the most restrictive phenotype; II40 was TFP/Q, 

the intermediate phenotype; and IK16 was Q/Q the permissive phenotype (Table 3-2). 

Four naïve rhesus macaques that were also negative for MHC I controlling alleles were 

used as controls for the challenge experiment. In an attempt to control for the variation in 

Trim5α alleles of the iMac239-ΔD385 group, naïve control animals with a mix of 

Trim5α alleles were chosen with one animal carrying TFP/TFP, two animals carrying 

TFP/Q, and one animal carrying Q/Q (Table 3-2).  
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Table 3-1: Viral genetic material in lymph nodes of iMac239-ΔD385 animals

86 weeks post infection
37 weeks post infection

 Copies/100,000 Cells 
 DNA RNA 

IC30a 2.4 1.2 
II40a 1.6 0.9 

HV24b 2.5 0.5 
IK16b 3.0 1.2 

a
b
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Table 3-2: Trim5α genotypes of study animals

Group Animal Trim5  Genotype Effect of Trim5  
Genotype on Infection 

iMac239- D385 
Animals 

IC30 TFP/TFP Restrictive 
II40 TFP/Q Intermediate 

HV24 TFP/TFP Restrictive 
IK16 Q/Q Permissive 

Control 
Animals 

JN82 TFP/TFP Restrictive 
JN28 TFP/Q Intermediate 
JB66 TFP/Q Intermediate 
JL28 Q/Q Permissive 
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 All animals were inoculated intrarectally weekly with SIVsmE660 (5,000 

TCID50). After five weekly challenges, animals with detectable SIVsmE660 plasma virus 

were excluded from subsequent challenges. Challenge inoculations were stopped after ten 

weeks. Of the control animals, one animal became infected on the first challenge and the 

remaining three were infected on the second challenge. Of iMac239-ΔD385 animals, two 

animals were infected on the second challenge (II40 and IK16), one animal was infected 

on the seventh challenge (HV24), and one animal remained uninfected after all ten 

challenges (IC30) (Fig. 3-8A). 

 The acute peak plasma SIVsmE660 viral load in control animals ranged from 106-

107 RNA copies/mL (Fig. 3-8B and C). After the acute viral peak, two control animals 

maintained a viral set point approximately one log lower than the acute peak and were 

carriers of restrictive and permissive Trim5α alleles. The two control animals carrying 

the TFP/Q alleles controlled their plasma SIVsmE600 viral load to ≤103 vRNA 

copies/mL by 50 dpi (Fig. 3-8C, Left panel).   

Of the three iMac239-ΔD385 infected animals that acquired SIVsmE660 post 

challenge, the acute plasma SIVsmE660 viral load ranged from 105-106 vRNA copies/mL 

(Fig. 3-8B). Strikingly, when stratified by Trim5α genotype, a clear one log reduction in 

peak plasma viral load was observed in iMac239-ΔD385 compared to control animals, 

however there are not enough animals in this study to determine significance (Fig. 3-8B).  

One iMac239-ΔD385 infected animal, IK16, maintained a high SIVsmE660 viral load 

throughout the chronic phase. The two other SIVsmE660-infected iMac239-ΔD385 

animals, II40 and HV24, exhibited a slower time to acute viral peak and variable plasma 

SIVsmE660 viral loads that had multiple chronic phase peaks followed by periods of 
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Figure 3-8: Outcome of SIVsmE660 pathogenic challenge. (A) Kaplan-Meir curve 
indicating the number of inoculations required before infection in the control and 
iMac239-ΔD385 groups. (B) Acute plasma peak viral load for the control group and 
iMac239-ΔD385 group organized by Trim5α genotype. (C) Plasma SIVsmE660 viral 
loads for the control group (Left panel) and iMac239-ΔD385 group (Right panel) 
animals.
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declining replication. After 200 days the SIVsmE660 viral load had plateaued, a high set-

point and a low set-point in II40 and HV24, respectively (Fig. 3-8C, Right panel). 

 While the number of animals in this experiment is too small to calculate 

significance, it appears that iMac239-ΔD385 infection may have worked synergistically 

with the effect of Trim5α alleles to prevent infection in one animal, reduce the acute 

SIVsmE660 viral load by approximately a log in three animals, and prolong the time to 

peak SIVsmE660 viral load in two animals. 

 

CD4+ T cell population dynamics post-challenge 

 As an indicator of disease progression post challenge we monitored the 

population of CD4+ T cells in SIVsmE660 infected animals. We observed an average 

60% drop in the LPL CD4+ T cells in the four control animals by day 28, corresponding 

with acute viral replication (Fig. 3-9, Left panel). None of the animals were able to 

recover significant numbers of LPL CD4+ T cells during the chronic phase. Only one 

iMac239-ΔD385 animal, IK16, lost the vast majority of its LPL CD4+ T cells post 

challenge (89.2% at 28 dpi). The other two SIVsmE660 infected iMac239-ΔD385 

animals ultimately lost 20-40% of their LPL CD4+ T cells, however this loss was gradual 

and only manifested during the chronic phase of infection (Fig. 3-9, Right panel). 

Although not statistically significant, these findings suggest that iMac239-ΔD385 

infection prior to challenge resulted in an immune response capable of blunting the loss 

of target LPL CD4+ T cells from SIVsmE660 infection in two of three animals. 

 

 

116



www.manaraa.com

0 50 100 150 200
0

20

40

60

80

100

120

140

Days Post Infection

%
 o

f P
re

-C
ha

lle
ng

e 
LP

L 
C

D
4+

 T
-c

el
ls

JN82
JN28
JB66
JL28

Control Group
A.

Figure 3-9: CD4+ T cell populations in SIVsmE660 challenged rhesus macaques. 
Percentage of pre-infection CD4+ T cells in lamina propria in control (Left panel) and 
iMac239-ΔD385 (Right panel) groups.
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Analysis of transmitted founder SIVsmE660 variants 

 While iMac239-ΔD385 vaccination was not sufficient to prevent the acquisition 

of SIVsmE660 in three of four animals, we sought to determine whether the antibody 

response observed in these animals pre-challenge had been able to reduce the number of 

SIVsmE660 transmitted founder viruses and, or, select for neutralization resistant 

transmitted founder strains. Utilizing single genome amplification and sequencing of 

plasma virus at the acute peak and during the chronic phase we were able to determine 

that two of three iMac239-ΔD385 animals had only one transmitted founder SIVsmE660 

strain and the third animal, IK16, had more than ten transmitted founder SIVsmE660 

strains (Fig. 3-10, Table 3-3). The four control animals were infected with varying 

numbers of SIVsmE660 strains either one, two, or six (Table 3-3).  

Based on genetic signatures within Env we were able to predict the neutralization 

phenotype of these transmitted founder (T/F) and chronic phase SIVsmE660 strains in the 

iMac239-ΔD385 animals (75, 91). There was no clear selection for a neutralization 

phenotype of transmitted founder variants, the T/F of II40 was neutralization resistant, 

the T/F of HV24 was neutralization sensitive, and IK16 had a mixed population of 

variants (Table 3-3). However, during the chronic phase, all three animals selected for a 

dominant variant that is predicted to be neutralization resistant; this selection occurred 

within 2-3 months. The predicted neutralization phenotypes of the SIVsmE660 strains in 

the control animals were not determined. 

This study is too small to determine a significant difference in the number of 

transmitted founder strains between the control and iMac239-ΔD385 groups. While there 

was no obvious selection for a particular neutralization phenotype in the transmitted 
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Figure 3-10: Evolution of SIVsmE660 strains in iMac-ΔD385 infected animals. 
Bayesian phylogeny of the Env amino acid sequences of transmitted founder (T/F) and 
chronic strains of SIVsmE660 derived from the plasma of SIVsm660 infected 
iMac239-ΔD385 rhesus macaques by SGA analysis.
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Table 3-3: Table of transmitted founder SIVsmE660 strains.

Group Animal # of Transmitted 
Founders 

Genetic 
Prediction of 

Neutralization 
Phenotype of 
Transmitted 

Founder 

Genetic Prediction 
of Neutralization 

Phenotype 
Dominant Variant 

During Chronic 
Phase 

iMac239- D385 
Animals 

II40 1 Resistant Resistant 
HV24 1 Sensitive Resistant 
IK16 10 Mixed Resistant 

Control 
Animals 

JB66 2 

Not Determined JN82 2 
JN28 1 
JL28 6 
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founder strains of iMac239-ΔD385-infected animals, the presence of a neutralization 

resistant strain as the dominant chronic phase variant based on genetic signatures in three 

of three iMac239-ΔD385 animals implies a humoral response that is exerting immune 

pressure on the viral swarm in these animals. 

 

Antibody responses post challenge 

 Although infection with iMac239-ΔD385 resulted in strong immune responses, it 

was only able to protect against SIVsmE660 acquisition in one of four animals. Therefore 

we were interested in monitoring how the immune responses in iMac239-ΔD385 infected 

animals might further develop after exposure to an additional SIV. Both control and 

iMac239-ΔD385 animals rapidly developed high neutralizing titers (~106 ID50) to a Tier 1 

SIVsmE660 strain, SIVsmE660.2A5-VTRN (Fig. 3-11A, Left panel) (75).  All animals 

developed a much lower neutralizing response (~103 ID50) against a Tier 2 neutralization 

resistant strain, SIVsmE660.2A5-IAKN (75), however this response took a longer time to 

mature (Fig. 3-11A, Right panel). 

 We continued to monitor the humoral response over time to determine if the 

breadth or magnitude of the response would increase. We found two animals, IK16 and 

II40, whose sera ultimately could neutralize 100% of the Tier 2 neutralization resistant 

SIVsmE660 strain SIVsmE660.2A5-IAKN, which has not previously been reported (75, 

91). The ability to neutralize 100% of this strain did not occur until 16 weeks post 

infection in IK16 and 45 weeks post infection in II40 (Fig. 3-11B). 

 While there is no evidence to suggest that the antibody responses in control or 

iMac239-ΔD385 animals was able to control SIVsmE660 replication, the expansion of 
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Figure 3-11: Neutralization activity in serum from control and iMac239-ΔD385 
animals post SIVsmE660 challenge. (A) Neutralization of a Tier 1 (Left panel) or Tier 
2 (Right panel) pseudotype strain of SIVsmE660 over time. (B) Percent neutralization of 
the Tier 2 SIVsmE660.2A5-IAKN pseudotype over time by sera from 
iMac239-ΔD385 animals IK16 (Left panel) and II40 (Right panel).
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breadth and increase in magnitude in two of three iMac239-ΔD385 animals post 

SIVsmE660 challenge suggests that iMac239-ΔD385 infection may have primed these 

animals for an improved humoral response. Further work is being done to characterize 

the epitopes targeted by this neutralizing response. 

 

Discussion 

We propose that our novel strain, iMac239-ΔD385, which no longer binds CD4, 

is the first model of true CD4-independent SIV infection in vivo. As discussed 

previously, other reported CD4-independent strains of SIV maintain a functional CD4 

binding site and presumably will still utilize CD4 for entry in vivo (40, 47, 48). These 

reported CD4i strains commonly result in low viral loads, macrophage infection, and 

pathologies associated with macrophage infection, including giant cell pneumonias and 

neurological disease (41, 48, 56, 55). In contrast, iMac239-ΔD385 infection results in a 

high acute viremia but without any AIDS related pathologies, despite early macrophage 

infection. In spite of the ablation of, or significant reduction in, CD4 binding, iMac239-

ΔD385 did not appear to suffer a significant fitness cost in vivo with an acute peak 

similar to that of SIVmac239, albeit at a slight delay (Fig. 3-1). Additionally, in all four 

animals the virus maintained all of the Env mutations present in the inoculum suggesting 

that CD4 binding was not required for robust replication and that mutations imparting 

CD4-independence did not impair replication. One animal showed the acquisition of an 

additional mutation in the cytoplasmic tail of Env, however it is likely that this mutation 

is the result of MHC-II mediated immune pressure rather than an attempt to overcome a 

fitness deficit (Fig. 3-2). 
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Similar to other live attenuated SIV strains, iMac239-ΔD385 viral replication 

rapidly declined after the acute peak.  Interestingly, in comparison to the live attenuated 

viruses (LAVs) studied by Fukazawa et al (87), iMac239-ΔD385 had a peak similar to 

that of SIVmac239Δnef, which had the highest peak of the study group, but iMac239-

ΔD385 had a much lower chronic phase set point of undetectable viral replication, most 

similar to the single cycle SIVmac239 (scSIVmac239). The undetectable plasma viral 

load in the chronic phase of iMac239-ΔD385 infection suggested that the host immune 

response had effectively controlled viral replication.  

We had hypothesized that a non CD4-tropic virus would no longer selectively 

target CD4+ T cells in vivo, and that these cells would be preserved during infection. In 

four of four iMac239-ΔD385 infected animals we observed no significant loss of CD4+ T 

cells in the periphery or lamina propria, indicating that we had in fact disrupted CD4 

tropism in vivo (Fig. 3-3). Our previous work had shown that iMac239-ΔD385 could 

infect CD8+ CCR5+ T cell in vitro, thus we also investigated whether CD8+ T cells were 

lost during in vivo infection. We found that, similar to the CD4+ T cell population, CD8+ 

T cells were maintained at roughly pre-infection levels through the first 100 days of 

infection (Fig. 3-3). From these results we can draw two conclusions, the first is that both 

of these cell populations were maintained during iMac239-ΔD385 infection and are 

available to perform their adaptive immune response functions. Second, the high viral 

replication during the acute phase, but preservation of these two cell types, suggests that 

they either are not the primary cell targets or, that infection does not cause widespread 

cellular death. 
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Given the apparent conservation of T cells in the periphery and GALT, we used 

confocal microscopy to determine the immunophenotype of infected cells in the lamina 

propria and lymph node during peak infection. We observed an expansion in the cell 

types infected beyond CD4+ T cells with iMac239-ΔD385 infection of CD3+ T cells, 

CD68+ macrophages, and an as yet unidentified cell type that is negative for the markers: 

CD3-, CD2-, CD68-, CD163-, LN5-, DR-, CD123-, CD209-, CD20- at peak infection in 

both the lamina propria and lymph node (Fig. 3-5A and B). Besides the expanded cellular 

tropism in vivo, we also observed an alteration in the anatomic distribution of infection 

within the lymph node at peak infection. In particular, very few infected cells were 

observed in the T cell rich cortical region of the lymph node including in and around 

germinal centers. Rather, infected cells were predominantly found in the medulla of the 

lymph node, but were not identified as macrophages or dendritic cells based on confocal 

microscopy staining (Fig. 3-5C). 

The paucity of iMac239-ΔD385 infected cells in the cortex of the lymph node is 

in sharp contrast to the extensive infection of Tfh cells in this region during pathogenic 

infection (92). Recent work has highlighted how infection of this cell type contributes to 

pathogenesis not just through deregulation of Tfh mediated B cell help, perturbations of 

B cell differentiation, and dysregulated antibody production, but also as a source of the 

viral reservoir (25–30, 87). Thus the lack of infected Tfh cells in the iMac239-ΔD385 

model raises the possibility that these cells will be able to function normally, potentially 

resulting in an improved humoral response. While we were able to assess the humoral 

response in iMac239-ΔD385 infected animals, as discussed below, this model requires 

further investigation to establish the anatomic location and cell type responsible for 
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harboring the viral reservoir, as well as the dynamics and functionality of the Tfh 

population. 

The infection of macrophages is not surprising given the CD4-independent 

phenotype of iMac239-ΔD385. The observation of infected macrophages as early as 

seven days post infection in the GALT and lymph node precedes the appearance of 

macrophage infection in SIVmac239 infected animals by approximately two weeks (54). 

We had considered the possibility that iMac239-ΔD385, as a result of efficient 

macrophage infection, would cause a variety of pathologies associated with macrophage 

tropic strains, including neurological and pulmonary disease (41, 55, 56). While we 

observed low levels of viral RNA in the cerebrospinal fluid (CSF) of iMac239-ΔD385-

infected animals during the acute phase, the viral load declined to undetectable levels 

during the chronic phase, mirroring the plasma viral load (data not shown). The lack of 

detectable viremia in the CSF does not preclude the presence of iMac239-ΔD385 in the 

brain during the chronic phase, however more extensive sampling of brain tissues is 

required to determine the extent of infection in this compartment. It is worth noting that 

none of the animals manifested outward clinical signs of brain or pulmonary disease, 

suggesting that damage due to infection or inflammation in these tissues was minimal. 

The evidence of multiple cell targets and the prevalence of these cells (CD3+ T 

cells and macrophages in particular), suggested that the undetectable plasma viral load 

during the chronic phase of infection was not due to lack of cellular targets but rather the 

result of immune control. To understand the mechanism of viral control and determine if 

virus had been cleared, two animals underwent a CD8+ T cell depletion 300 days post 

infection. The CD8+ T cell depletion resulted in a low (~102 vRNA copies/mL) and 
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transient viral peak, with plasma viral loads once again becoming undetectable upon 

reappearance of peripheral CD8+ T cells approximately 40 days after the initial depletion 

(Fig. 3-5A). In these two animals the plasma viral load remained undetectable for another 

300 days (Fig. 3-5B) at which point we assessed the amount of virus in the lymph node to 

determine if virus was still replicating in tissues. In all four animals (two at 86 wpi, two 

at 37 wpi, Table 3-1) we observed approximately one copy of RNA and one copy of 

DNA per 100,000 cells, the lowest reported for other live attenuated SIVs (87). Thus, 

while virus had not been cleared, it was under exquisite host control.  

Although the reemerging plasma viral peak during the CD8+ T cell depletion was 

low, suggesting a non- CD8+ T cell mechanism of viral control, we assessed the 

functional responses of CD8+ and CD4+ T cells in the periphery and lamina propria. We 

found that all four animals produced polyfunctional T cell responses in both 

compartments (Fig. 3-6); however further work is required to determine if these cells are 

in fact capable of killing infected cells. Interestingly, the most commonly expressed 

cytokine in both CD8+ and CD4+ T cells was CD107α, whose expression has been 

correlated with viral control of SIV after vaccination (93) and in elite controllers of HIV-

1 (94, 95).  This result implies that viral control may be possible through a T cell 

mediated mechanism, either through CD4+ (96) or CD8+ (97) cytotoxic responses, but 

under the current conditions of the model other aspects of the immune system obscure the 

effect of this response. 

In all four animals, a high neutralizing antibody response emerged against 

autologous, homologous, and heterologous Tier 1 strains during the acute phase and 

coincided with the decline in plasma viral load (Fig. 3-7). Strikingly, this neutralizing 
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response was maintained at high levels during chronic infection when plasma viral load 

was undetectable and viral replication in tissues was extremely low. These data, coupled 

with retargeting of viral infection away from germinal centers, suggest a robust humoral 

memory response, rather than continual antigen stimulation of the immune system is the 

source of high neutralizing antibody titers throughout chronic infection. 

 Based on our observations of polyfunctional CD8+ and CD4+ T cell responses in 

conjunction with a high and sustained neutralizing antibody response, we tested whether 

iMac239-ΔD385 could serve as an effective live attenuated vaccine against a pathogenic 

challenge. The four iMac239-ΔD385 animals, along with Trim5α matched naïve control 

animals were challenged intrarectally with a SIVsmE660 swarm once a week for up to 

ten weeks. All four control animals and three of four iMac239-ΔD385 animals became 

infected with SIVsmE660. Follow-up studies with larger groups of study animals are 

required to determine if there is a significant reduction in acquisition of SIVsmE660 after 

iMac239-ΔD385 infection. When separated by Trim5α genotype, we observed an 

approximate one log decrease in acute SIVsmE660 plasma viral load in iMac239-ΔD385 

animals as compared to control animals, however the number of animals in this study is 

too small to determine significance (Fig. 3-8). Interestingly, while the prototypic loss of 

GALT CD4+ T cells was observed in control animals after SIVsmE660 infection, 

depletion of this magnitude only occurred in one iMac239-ΔD385 animal (Fig. 3-9). This 

finding implies that the immune responses induced by iMac239-ΔD385 infection were 

sufficient for continued protection of the CD4+ T compartment in two of three animals, 

even in the face of high SIVsmE660 viral loads.   
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To determine if iMac239-ΔD385 vaccination was partially effective as measured 

by a reduction of transmitted founder strains or a sieving of the challenge inoculum such 

that only neutralization resistant SIVsmE660 strains were able to cross the mucosa, we 

assessed the number of transmitted founder and chronic strains and performed sequence 

analysis to predict their neutralization phenotype based on genetic signatures within Env 

(Fig. 3-10, Table 3)(75). We observed a trend towards a reduction in transmitted founder 

strains in the iMac239-ΔD385 animals and selection for predicted neutralization resistant 

strains during the chronic phase; the predicted neutralization phenotype variants in the 

control group animals remains to be determined. Given the apparent selection of a 

predicted neutralization resistant SIVsmE660 in iMac239-ΔD385 animals, we assessed 

the anti-SIVsmE660 neutralizing antibody response in both groups. We found that while 

initially unable to neutralize a Tier 2 neutralization resistant SIVsmE660 strain, two of 

three SIVsmE660 infected iMac239-ΔD385 animals ultimately developed a humoral 

response that was able to neutralize 100% of this variant (Fig. 3-11). This finding is 

particularly striking because it is the first report of 100% neutralization of this particular 

Tier 2 strain (75). 

This novel in vivo model showcases not only the role of CD4 binding for SIV, but 

also highlights the consequences of CD4 tropism for the host immune system. In the 

context of a primate lentivirus that no longer specifically targets CD4+ T cells, the 

adaptive immune system is preserved and able to mount both cellular and humoral 

functional responses. It has long been appreciated that the loss of CD4+ T cells during 

pathogenic HIV and SIV infections results in the collapse of the adaptive immune 

system, increasing the host’s susceptibility to opportunistic infections, thus it perhaps is 
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not surprising that in a model where CD4+ T cells are preserved the adaptive immune 

system remains functional.  

It is well understood that CD4-independent viruses have Env trimers with a more 

“open” conformation (98, 99), as if CD4 was already bound; however this is achieved 

through genetic mutation rather than ligand binding. We have shown that SIV does not 

require CD4 tropism for robust replication in vitro and in vivo, however one consequence 

of this trimer formation is a significant increase in neutralization sensitivity (Chapter 

2)(39, 100–102). Thus, while the virus is capable of high viral replication, in vivo it 

would be highly susceptible to the host humoral response, a plausible reason why such 

variants rarely arise in vivo (39, 103, 104). This susceptibly, coupled with an intact 

adaptive immune response is the most likely explanation for the extremely low levels for 

viral replication throughout the chronic phase. 

A common phenomenon in live attenuated vaccine models is the inverse 

relationship between the degree of attenuation of the vaccine strain and efficacy (105, 

106). The results from two animals within our model recapitulated this effect, by which 

the magnitude of the initial iMac239-ΔD385 viral load correlated with the magnitude of 

both cellular and humoral responses, and ultimately, in conjunction with Trim5α alleles, 

resulted in drastically different outcomes post-challenge. Specifically, animal IC30 had 

the highest acute iMac239-ΔD385 viral load, the highest neutralizing antibody response, 

the greatest proportion of polyfunctional T cells, and the restrictive Trim5α genotype, 

while animal IK16 had the lowest levels of these three parameters and the permissive 

Trim5α genotype. IC30 was fully protected against ten SIVsmE660 intrarectal 

challenges, in contrast to IK16, which was infected on the second challenge and exhibited 
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the highest level of SIVsmE660 replication and greatest loss of CD4+ T cells of all 

iMac239-ΔD385 animals. Although the inverse relationship between attenuation and 

efficacy coupled with the possibility of reversion to pathogenicity through mutation have 

precluded the development of live attenuated vaccines for HIV clinical trials, they remain 

one of the two most successful SIV vaccination strategies to date (reviewed in (107, 

108))(109), and thus are valuable models for studying correlates of protection. 

The development of an improved humoral response, both in expansion of breadth 

and increase in magnitude, in two of three iMac239-ΔD385 animals that became infected 

with SIVsmE660 is tantalizing for the implication that iMac239-ΔD385 infection may 

have served as a prime for the humoral immune system. While it is clear that this 

improved antibody response was unable to dampen viral replication for the host in which 

it arose, it is nonetheless intriguing. Current work is focused on isolating novel antibodies 

capable of neutralizing 100% of the Tier 2 SIVsmE660-2A5.IAKN strain from iMac239- 

ΔD385 animal IK16. Such an antibody would be a valuable reagent, not only for 

inclusion in neutralizing antibody panels used for characterizing novel strains of SIV, but 

also for the structural and binding data that could inform the antibody’s mechanism of 

neutralization. Elucidating this mechanism will be important for understanding the 

neutralization “lawn chair” effect seen with SIVsmE660-2A5.IAKN, in which maximal 

inhibition of infection by the molecular clone occurs at only 50% (75, 91) 

Future studies exploring the role of a CD4-sparing prime in improving the quality 

of the humoral response could include adding a CD4-independent Env to a sequential 

vaccination series. In such a system, exposing the host to an initial prime of an open 

conformation CD4-independent Env (iMac239-ΔD385), followed by a boost of a closed 
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conformation CD4-dependent Env (SIVsmE660), through a series of soluble Env trimers 

(110, 111) may result in a similarly broad humoral response and recapitulate our model. 

In summary, our novel model provides insight into the relationship between the 

viral Env and CD4 and its effect on the immune system. Taken together, these results 

suggest that viral engagement of CD4 is not required for robust replication, but rather 

contributes to pathogenesis by allowing for multiple conformations to shield vulnerable 

epitopes and by targeting a critical component of the adaptive immune system. 

 

Acknowledgements 

 We thank the veterinarian staff at TNPRC for the care and management of our 

study animals and sample collections. 

This work was supported by NIH grants R01-AI112456 and R01-AI074362 

(J.A.H.). A.E.S. was supported by NIH grant T32-AI07632. The Nonhuman Primate 

Core of the Penn Center for AIDS Research provided extensive assistance (P30-

AI045008). The funders had no role in study design, or data collection and interpretation. 

  

132



www.manaraa.com

0 5 10 15
0

1,000

2,000

3,000

4,000

5,000

6,000

Day

p2
7 

Ga
g 

(p
g/

m
L)

SIVmac239
iMac239- D385
iMac239- D385 Q739

Supplemental Figure 3-1: Replication of Q739 mutant in rhesus PBMCs. 
Replication of SIVmac239, iMac239-ΔD385, and iMac239-ΔD385 Q739 in 
ConA/IL-2 stimulated rhesus PBMCs is shown. p27 Gag in culture supernatants was 
quantified by ELISA at the indicated time points. Results from a representative 
experiment are shown.
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Overview 

HIV-1 infection in humans is characterized by the targeting of CD4+ T cells that 

express at least one of two chemokine coreceptors, CCR5 and CXCR4 (1–3). The 

depletion of the CD4+ T cell population ultimately leads to the collapse of the adaptive 

immune system and renders the host susceptible to opportunistic infections (reviewed in 

(4)). Despite high rates of viral mutation and recombination, usage of CD4 as the primary 

receptor is an invariant feature (1, 5). For these reasons, usage of CD4 by HIV-1 is of 

interest, not only for gaining a better understanding of viral entry into a target cell, but 

also because it is directly linked to pathogenesis and clinical outcome. 

The overall goal of this thesis was to study the role of CD4 binding for a primate 

lentivirus. To do this, we set out to develop an SIV that no longer required CD4 for entry, 

to assess the consequence of removing this interaction for the virus while simultaneously 

determining if there was any benefit for the infected host. Within the lentivirus family, 

primate lentiviruses have evolved most recently and CD4 tropism is unique to this group 

(6), suggesting a specific role for this interaction, either by increasing viral fitness and, 

or, making the virus-host exchange more favorable for the virus. The former could be 

achieved through an overall increase in avidity at the stage of virion binding to the cell 

through the engagement of two receptors rather than one. The latter is hypothesized to 

result from both the shielding of vulnerable epitopes on the viral Env from neutralizing 

antibodies, which are only exposed after CD4 engagement (7, 8), and the selective 

targeting of CD4+ T cells, a critical component of the adaptive immune response (9–12). 

Our work has shown that neither a CD4-independent virus nor a CD4-

independent virus that no longer binds CD4 suffers from a severe fitness deficit, in vitro 
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or in vivo, suggesting that the gp120-CD4 binding interaction is not required for robust 

replication. The genetic mutations that arose to adapt the virus to growth in a CD4-

negative cell line resulted in conformational changes within Env, as evidenced by an 

increase in neutralization sensitivity to antibodies targeting epitopes across gp120. 

However, in identifying the minimum set of mutations required to recapitulate the CD4-

independent phenotype of our novel variant we discovered a strain, that while able to 

replicate in CD4-negative cells as efficiently as the parental strain, was not neutralization 

sensitive. These results indicate that the evolution to bind CD4 likely served as a 

mechanism by which the virus could “hide” from the host immune response, but that 

under at least one condition CD4-independence and neutralization sensitivity can be 

uncoupled. Finally, iMac239-ΔD385 infection in rhesus macaques did not deplete CD4+ 

T cells, leaving this cell population intact to provide T cell help to the adaptive immune 

system, and resulting in a robust immune response capable of controlling viral 

replication. 

 

Deriving CD4-independence in vitro 

Chapter 2 details the derivation and characterization of a novel CD4-independent 

strain from the neutralization resistant, CD4-dependent, CCR5-tropic clone SIVmac239, 

termed iMac239. CD4-independence was achieved through selection in cell culture, 

which fixed mutations in the viral env gene. Selection for CD4-independence also 

resulted in a more “open” Env trimer conformation that was susceptible to antibodies 

targeting CD4-induced epitopes, even in the absence of CD4. Four mutations in gp120 

were found to be sufficient to confer CD4 independence, with one mutation, D178G, in 
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the V1/V2 loop shown to be necessary for the phenotype. It is worth noting that many 

other cited examples of viruses capable of using low levels or no CD4 for entry, have 

identified various mutations in the V1/V2 region as drivers of the phenotype (13–19). 

Strikingly, the D178G mutation alone in the context of a replication competent 

SIVmac239 molecular clone imparted a severe fitness cost, suggesting that this mutation 

on its own either results in misfolding of the Env protein or causes a conformational 

change within the Env trimer that disrupts normal cellular entry. We have shown that a 

single additional C2 mutation, H224Q, just past the V1/V2 loops, is able to stabilize the 

D178G mutant virus, although these two mutations together do not result in a CD4-

independent virus comparable to the parental iMac239; additional changes in V3 and V4 

are required. Strikingly, the SIVmac239 variant carrying a minimum set of iMac239 

changes to confer CD4-independence was not neutralization sensitive to a small panel of 

antibodies targeting CD4-induced epitopes, unlike other reported CD4-independent 

viruses. Since the mutations in this strain all occur in gp120, this result indicates that 

iMac239’s neutralization sensitivity is due to the additional mutations in gp41. This 

finding is supported by the model of “intrinsic reactivity” published by Haim, et al.(20), 

in which mutations in gp41 can enhance gp120 neutralization sensitivity. 

While this novel iMac239 strain is CD4-independent, none of the mutations in its 

Env are in the CD4-binding site, suggesting that this virus is still capable of binding CD4. 

Since we strove to study viral infection in the absence of CD4 binding we removed, 

through mutation, the Aspartic Acid residue at position 385 in the iMac239 Env. This 

residue is analogous to the Aspartic Acid at position 368 in the HIV-1 Env and has been 

shown to be an essential interaction between Env and CD4 (5, 21). This new strain, 
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iMac239-ΔD385, displayed no reduction in fitness in vitro compared to iMac239 in T 

cell lines or rhesus PBMCs. The same mutation introduced into SIVmac239 resulted in a 

virus that was unable to replicate. This result, along with the resistance of iMac239-

ΔD385 to inhibition by soluble CD4, indicated that we had either completely ablated 

CD4 binding or reduced it significantly. Like iMac239, iMac239-ΔD385 is sensitive to 

neutralization, both by plasma samples from SIVmac251-infected animals and 

monoclonal antibodies to various Env epitopes. 

As perhaps our strongest piece of evidence for true CD4-independent infection, 

we showed that iMac239 and iMac239-ΔD385 are capable of infecting CD8+ T cells in 

stimulated rhesus PBMC cultures. The proportion of infected CD8+ T cells in both 

infected cultures was too great for these cells to have been CD4+CD8+ T cells that 

downregulated CD4 upon infection. This result is clear proof of expansion of tropism to a 

CD4-CCR5+ cell type, which would only be possible with a true CD4-independent virus. 

 

Future directions for in vitro characterization of iMac239 and iMac239-ΔD385  

 The importance of a mutation in the V1/V2 loop for other viruses capable of 

utilizing low levels of CD4 for entry (13–19) and our CD4-independent strain indicate 

that this region plays an important role in altering CD4 engagement. Since this region has 

not been implicated in the direct binding interaction (1, 22), it would seem that its 

influence occurs through a conformational change. Although there is not yet a crystal 

structure of the SIV Env trimer, either alone or engaged with rhesus CD4, further 

structural analysis is warranted to better understand the mechanism of trimer transition 

from a “closed”, CD4-unbound, state to an “open”, CD4-bound, state through genetic 
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mutation rather than CD4 binding. Cryo-electron tomography thus far has given us the 

best picture of the open and closed states of the SIV Env trimer (23, 24), utilization of 

this technique along with a panel of viruses including SIVmac239, iMac239, and various 

SIVmac239 strains carrying individual and combinations of iMac239 mutations should 

provide valuable information regarding the regional changes required for CD4-

independence. 

 Our discovery that a molecular clone bearing solely the gp120 mutations from 

iMac239 recapitulated the CD4-independent phenotype, but not the neutralization 

sensitivity of the parental strain allows the two phenotypes to be uncoupled. This variant 

requires further testing in additional cell types, including rhesus PBMCs, to confirm that 

it does in fact replicate with the same kinetics and exhibits the same tropism as iMac239. 

If so, this virus could be an interesting strain to study in vivo as the first example of a 

neutralization resistant CD4-independent primate lentivirus. Additionally, the existence 

of this variant raises multiple questions, including why iMac239 developed the mutations 

in gp41 at all when they are not required for CD4-independence and how the mutations in 

gp41 alter the interaction between gp120 and gp41 to further change the conformation of 

the Env trimer and result in gp120 neutralization sensitivity. 

 In our study of iMac239-ΔD385 replication in stimulated rhesus PBMCs we 

observed a slight delay in the time of peak replication compared to SIVmac239 and 

iMac239, although the magnitude of the peak was similar for all three viruses. Of note, 

this delay in time of peak replication was not observed in our CD4+ or CD4_ T cell lines, 

where CCR5 expression is higher (unpublished) than that in rhesus PBMCs (25–28). 

These findings suggest differences in entry or replication kinetics that we have not 
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characterized. Time-of-addition experiments with a fusion inhibitor such as T-20, and 

studies characterizing the affinity of iMac and iMac239-ΔD385 for rhesus CCR5 could 

be used to determine how alterations in CD4-dependence affect fusion kinetics. Given 

Francella et al.’s (29) recent work showing CD4-independent Envs’ reduced ability to use 

low levels of CCR5 and increased sensitivity to Maraviroc, it is likely our two CD4-

independent variants have reduced CCR5 usage efficiency. While iMac239 may be able 

to overcome this defect by also using CD4 for entry, thereby increasing the overall 

avidity of the binding interaction between virion and cell, iMac239-ΔD385 cannot due to 

its ablated CD4 binding site, resulting in a delay in replication. 

Finally, while we have shown clear evidence of CD8+ T cell infection by both 

iMac239, and iMac239-ΔD385 in stimulated rhesus PBMCs, the novelty of this finding 

requires confirmation by other methods. One way to achieve this would be isolation of a 

pure CD8+ T cell culture prior to infection with iMac239 and iMac239-ΔD385. 

Alternatively infected cells from whole rhesus PMBC cultures could be sorted at peak 

infection and then analyzed for mRNA expression of CD4 and CD8. Either method 

would prove infection of a CD4- CD8+ T cell as opposed to a double positive (CD4+ 

CD8+) T cell that downregulated CD4 upon infection (30, 31). 

 

Evaluation of iMac239-ΔD385 in vivo 

We hypothesized that removing CD4 tropism from SIV in vivo would result in 

one of three outcomes. First, the virus would have a natural history similar to that of 

macrophage-tropic SIVs, which replicate to a low acute peak but then disseminate into 

tissues where they ultimately cause pathologies such as giant cell pneumonia and 
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encephalitis (32–36). Second, given a presumed expanded tropism to any cell expressing 

sufficient levels of CCR5 for entry, the virus would replicate to a very high acute peak 

and sustain high rates of viral replication throughout the chronic phase ultimately leading 

to early onset AIDS. Ortiz et al.’s (32) work showing that depletion of CD4+ T cells prior 

to SIV infection resulted in an outgrowth of CD4-independent strains that were highly 

pathogenic supports this hypothesis. Third, we hypothesized that an intermediate 

outcome might be possible. In this case, the virus would replicate to a high acute peak but 

would ultimately be controlled down to low levels of replication during the chronic 

phase, similar to other live attenuated strains (37–41). Viral control would be the result of 

the adaptive immune system, which, now supported by CD4+ T cells, was able to 

efficiently exploit viral neutralization sensitivity. As chapter 3 of this thesis details, the 

third outcome is what we observed, the virus replicated to an acute peak similar to that of 

wildtype but was then controlled to undetectable levels in the plasma, and extremely low 

levels in the tissues, likely as a result of a high and sustained humoral response 

effectively neutralizing this neutralization sensitive virus. 

While our in vitro studies showed that iMac239-ΔD385 replicated to a similar 

peak as SIVmac239 in stimulated rhesus PBMCs, although with a slight delay, we did not 

know if the conformational changes required to make Env CD4-independent would 

impart a fitness cost in vivo. Thus, when we observed an acute plasma load viral peak 

that was similar to that of SIVmac239 in vivo it was important to perform SGA on the 

iMac239-ΔD385 replicating in animals to determine whether the mutations in the 

inoculum had changed in any way or if any additional mutations had arisen. We found 

that all of the original iMac239-ΔD385 mutations were intact at peak viremia and no 
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additional mutations were found in three of four animals. The fourth animal had a single 

additional amino acid change in Env in 40% of amplicons sequenced, however it is likely 

that this mutation was due to MHC-II mediated immune pressure, rather than an 

evolution to improve replicative fitness. These findings, along with previous studies (32–

36), demonstrate that a CD4-independent strain is competent for in vivo replication. 

We hypothesized that infection with a non-CD4 tropic virus would result in 

retargeting of the virus away from selective infection of CD4+ T cells, although there was 

no reason these cells would not also be infected since they express CCR5. The flip side of 

this coin was that infecting animals with a CCR5-tropic virus meant that any cell type 

expressing sufficient levels of CCR5 would be susceptible to infection. We had already 

observed this possibility in vitro with the infection of CD8+ T cells in stimulated 

RhPBMCs. Thus monitoring CD4+ and CD8+ T cell populations in vivo as well as the 

identity of infected cells in tissues was important to understand the tropism of the virus in 

a host. Unlike wildtype strains (4, 42, 43), iMac239-ΔD385-infected animals never 

experienced a decline in their CD4+ T cell populations, either in the periphery or in the 

GALT. We also did not observe a decline in CD8+ T cells in either compartment. Upon 

examination of tissues from peak infection we discovered CD3+, CD68+, and CD3-, CD2-, 

CD68-, CD163-, LN5-, DR-, CD123-, CD209-, CD20- infected cells in both the lamina 

propria and lymph node. Taken together, these results show that while T cells are 

certainly infected, significant portions of these cells are not being killed. 

The undetectable levels of plasma viremia throughout the chronic phase of 

infection as well as the extremely low levels of viral RNA and DNA in the lymph nodes 

during chronic phase indicated the presence of host immune responses capable of 
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exquisite viral control. We evaluated both humoral and cellular responses in an attempt to 

determine if one or the other, or both could be the mechanism of control. We discovered 

that all four animals developed high and sustained neutralizing antibody responses to 

Tier-1 (neutralization sensitive) SIV strains as well as polyfunctional CD4+ and CD8+ T 

cell responses. Through a CD8+ T cell depletion in two animals we surmised that the 

neutralizing antibody response was a major contributor to viral control given that the 

ensuing viral peak was low and transient during the time of the CD8+ T cell depletion. 

While we were able to show that polyfunctional T cell responses were present in all four 

animals, we were not able to evaluate the potential of the T cell response to control viral 

replication in the absence of the neutralizing antibody response. The magnitude and 

maintenance of both of these immune responses is striking given the rarity of viral 

genetic material in the lymph node, which has been implicated as the main driver of T 

cell and B cell responses in other live attenuated SIV strains (37). These observations 

suggest that iMac239-ΔD385-infected animals were able to mount effective memory 

responses that were sustained even in the absence of, or with very low levels of, viral 

replication as the source of antigen. 

 Based on our observation of both polyfunctional T cell responses and high 

neutralizing antibody titers we tested whether iMac239-ΔD385 could serve as a live 

attenuated vaccine (LAV), which is one of two most successful SIV vaccination 

strategies tested to date (44–46). For the challenge study pathogenic SIVsmE660 swarm 

was inoculated intrarectally once a week for up to ten weeks in four iMac239-ΔD385 

infected animals and four Trim5α matched naive controls. Given the small numbers of 

animals and the confounding factor of three separate Trim5α genotypes the results of this 
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study are anecdotal, although these preliminary findings suggest a trend towards 

improved challenge outcome in the vaccinated group.  

While all four control animals were infected by the second challenge, regardless 

of Trim5α alleles, only two iMac239-ΔD385 animals were infected on the second 

challenge, one with the most permissive Trim5α genotype and one with the intermediate 

genotype. The two iMac239-ΔD385 animals carrying the most restrictive Trim5α 

genotype either did not become infected until the seventh challenge or remained 

uninfected after ten challenge inoculations. When compared by Trim5α genotype, 

iMac239-ΔD385 animals exhibited an approximate one log reduction in SIVsmE660 

peak viral load. Additionally, two of three iMac239-ΔD385 maintained the majority of 

CD4+ T cells in the lamina propria while control animals lost the majority of this cell 

population, similar to wildtype SIVsmE660 infection (47). As SIVsmE660 infection 

progressed in three iMac239-ΔD385 animals, there was clear selection for a predicted 

neutralization resistant SIVsmE660 strain, suggesting a humoral response in these 

animals that was exerting immune pressure on the virus. Indeed, evaluation of the 

neutralizing antibody response in these animals revealed that two of the three animals had 

developed a humoral response that had increased in magnitude and expanded in breadth 

as evidenced by the 100% neutralization of a Tier-2 SIVsmE660-2A5.IAKN strain, the 

first report of this occurrence (48).  

Taken together, while prior iMac239-ΔD385 infection did not overtly prevent 

acquisition of a pathogenic heterologous challenge strain, the data suggest that the time to 

viral acquisition was slower when favorable Trim5α alleles were present, time to acute 

viral peak was slower, the magnitude of the viral peak was lower, and CD4+ T cells were 
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preserved, indicating that with longer follow-up the overall outcome of iMac239-ΔD385 

animals may be better. Finally, the increase in magnitude and expansion of breadth of the 

humoral response in two iMac239-ΔD385 animals post challenge raise the tantalizing 

possibility of the role of iMac239-ΔD385 as a prime for the adaptive immune response. 

 

Future Directions for iMac239-ΔD385 in vivo studies 

 While this study was small, with only four rhesus macaques infected with 

iMac239-ΔD385, it has provided a wealth of information suggesting many avenues of 

exploration. One glaring unknown is the identity of the third infected cell type we 

observed at peak infection in tissue samples from the lymph node and lamina propria. 

Further investigation is required, either through testing larger panels of antibodies to 

other cellular markers using confocal microscopy, or through the sorting of infected cells 

from tissues and subsequent transcriptional analysis to determine the cellular identity 

based on mRNA expression patterns. One requirement of both of these methods is large 

quantities of tissues with sufficient numbers of infected cells to power studies for 

statistical significance. This requirement can only be met during the acute phase of 

iMac239-ΔD385 infection when there are high numbers of infected cells in tissues. 

Given the ethical guidelines on the number and size of tissue biopsies, sacrifice of a small 

number of animals at the peak infection time point would be the best method to acquire 

large amounts of tissues. Necropsy at this time would also allow for tissue sampling of 

other compartments such as the brain and lungs where more extensive replication in 

macrophages may occur. 
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 Necropsying small numbers of animals at time points during the acute and early 

part of the chronic phases will not only provide more samples for the identification of the 

unknown infected cell type, but will also help in determining the primary locations of 

active viral replication during iMac239-ΔD385 infection. As of now, while we know that 

virus is present in the lymph node (albeit at very low levels) during the chronic phase of 

infection, we do not know if this is the sole site of replication, or if other compartments, 

such as the brain, may also harbor replicating virus. Therefore, sampling a variety of 

tissues from the time of peak viral replication through the point where plasma viral load 

is undetectable will show not only the sites of initial viral replication but also where virus 

resides in the face of a strong humoral response. For these experiments in situ 

hybridization for SIV RNA along with confocal microscopy to identify cells containing 

viral RNA would be useful for determining regions of viral replication within tissues. 

Isolation and sorting of cells from these regions with subsequent immunophenotyping 

and measurement of p27 Gag will further characterize the cell populations producing 

virus.  

 Long-term follow-up of iMac239-ΔD385-infected animals will be important to 

determine if the immune responses observed during chronic infection are sufficient to 

ultimately clear the virus. If so, this would be the second reported example of viral 

clearance, after Hansen et al.’s (46) data showing viral clearance as a result of RhCMV-

vectored vaccination. It would be the first example of viral clearance resulting from 

immune responses developed during the course of active SIV infection and provide an 

avenue of investigation into another immune-mediated mechanism of clearance. 
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 A major area of interest is the mechanism of control of iMac239-ΔD385 

replication. Our current hypothesis is that host control is mediated by the humoral 

response, given the high neutralizing titers we observed, the extreme neutralization 

sensitivity of iMac239-ΔD385, and the low and transient peak observed after CD8+ T cell 

depletion. However, this hypothesis does not exclude the possibility that other 

components of the adaptive immune system are capable of viral control. To ascertain 

which aspects of the immune system may be contributing to viral control, depletions of 

three key cell types must be considered: CD4+ T cells, CD8+ T cells, and B cells.  

Depletion of CD4+ T cells prior to iMac239-ΔD385 infection in a manner similar 

to that described by Ortiz et al. (32), would highlight the critical role of CD4+ T cells in 

the development of the adaptive cellular and humoral responses. It is likely that in this 

scenario iMac239-ΔD385 will have a natural history similar to that observed by Ortiz et 

al. (32) with a high peak viral load during acute infection followed by high viral load set 

point and rapid progression to AIDS. This outcome would be due to the ability of 

iMac239-ΔD385 to replicate in non-CD4+ cells and the inability of the adaptive immune 

to mount an effective response without CD4+ T cell help. 

Depletion of CD8+ T cells during the course of iMac239-ΔD385 infection needs 

to be repeated to confirm our earlier findings in larger numbers of animals. Our 

preliminary evidence in two animals of a low and transient viral peak following depletion 

of peripheral CD8+ T cells suggested that CD8+ T cells are making only a minor 

contribution to viral control. Our current hypothesis is that when CD8+ T cell immune 

pressure is relieved only a low amount of viral replication is possible because of the high 

levels of circulating neutralizing antibodies. 

161



www.manaraa.com

Depletion of B cells prior to and during the acute phase (49) of iMac239-ΔD385 

infection would show whether the cellular arm of adaptive immunity is capable of viral 

control. The goal of this experiment is to prevent the host from developing its humoral 

response, which we believe is the primary source of viral control in this model. Our data 

showed that both CD4+ and CD8+ T cells had polyfunctional cytokine responses in both 

the periphery and lamina propria, however we do not yet know if these responses would 

be effective in controlling viral replication. If viral replication did not decrease 

significantly after the acute phase in this experiment, it would suggest that cellular 

responses alone are insufficient to mediate control. However, if the viral set point were 

significantly lower than the acute peak, more so than the decline seen in wild type 

infection, it would suggest that the cellular responses produced in iMac239-ΔD385 

infection are sufficient to control viral replication and could work synergistically with the 

humoral response. 

In all three of these depletion experiments any occurrence of moderate to high 

levels of viral replication would allow for the analysis of viral sequences to examine any 

viral evolution occurring in vivo. Any mutations that arise would serve as genetic 

signatures and provide information on whether the virus is adapting to improve fitness or 

escape immune pressure. It would also be interesting to determine if iMac239-ΔD385 

reacquired the ability to bind CD4, either by reinserting an aspartic acid residue at 

position 385 or by developing compensatory mutations. If CD4 tropism is reacquired, this 

virus could be tested in naïve animals to determine if the reacquisition served to improve 

viral fitness and/or shield the virus from a particular arm of the immune response, as 
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evidenced by higher rates of acute viral replication in acute infection, or the inability of 

the host to control viral replication in the chronic phase, respectively. 

Another important experiment would be to infect naïve rhesus macaques with the 

parental CD4-independent iMac239 strain, which still has an intact CD4 binding site. We 

have already established that iMac239 is capable of CD4-independent infection in vitro 

with the observation that it infects stimulated rhesus macaque CD8+ T cells, thus we have 

reason to believe that it too would exhibit an expanded tropism in vivo. Also like 

iMac239-ΔD385, iMac239 has an open Env trimer conformation and is globally sensitive 

to monoclonal antibodies targeting epitopes across gp120; therefore we hypothesize that 

this virus would also be neutralized by the host humoral response. The key, and only, 

difference between the two viruses is the binding interaction between gp120 and the CD4 

molecule. Thus any alterations in the natural history of iMac239 infection compared to 

that of iMac239-ΔD385 would be a consequence of Env-CD4 binding.  

Previous work has shown that binding of gp120 to CD4 suppresses T cell 

activation and proliferation in response to antigen (50–52) . Additionally, the binding of 

the viral and cellular proteins to one another impedes the ability of CD4 to bind to MHC 

class II, thereby disrupting the natural function of CD4 (1, 53, 54). The extent to which 

the binding interaction disrupts CD4+ T cell function in vivo remains unknown. 

Comparison of CD4+ T cell population dynamics, including proliferation, activation, and 

functionality, between iMac239-ΔD385 and iMac239 infections will illuminate whether 

the binding of gp120 to CD4 significantly affects the CD4+ T cell population, and 

subsets, as a whole. 
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 Further challenge studies should be performed to extend our preliminary findings 

in this small set of animals. Historically, live attenuated vaccines (LAVs) are much better 

at protecting against homologous challenge than heterologous challenge (45, 47, 55, 56) 

and it remains to be seen whether iMac239-ΔD385 has the ability to induce immune 

responses capable of protecting against a homologous SIVmac239 or SIVmac251 

challenge. If further challenge studies are conducted using the SIVsmE660 stock, it will 

be critical to account for Trim5α alleles in the study population and group animals 

accordingly, either by choosing to use macaques that all have the same Trim5α alleles or 

by including sufficient numbers of control and iMac239-ΔD385 animals with each set of 

Trim5α alleles, so that Trim5α is not a confounding factor as it was in this initial study. 

 The recent creation of recombinant soluble Env trimers that adopt a native 

conformation through the SOSIP construct (57–59) has allowed for development of Env 

protein vaccination regimens that expose the immune system to the Env trimer in its 

natural, unliganded state, a previously unmet challenge (60). Current work on SOSIP 

trimers has focused on developing genetically diverse panels of trimers as well as 

determining the proper Env conformation to induce Tier-2 neutralizing antibodies post 

vaccination. The former has proven an easier hurdle to overcome with reports in the last 

year detailing SOSIP Env trimers made from a variety of HIV-1 clades (61, 62). Attempts 

to induce Tier-2 neutralizing antibodies have met with only moderate success (63). Based 

on our finding that iMac239-ΔD385 infection may have served as a prime for the host 

humoral response to develop robust Tier-2 neutralizing antibodies after exposure to a 

CD4-dependent pathogenic challenge, inclusion of a CD4-indendent SOSIP trimer in a 

sequential vaccination regimen may be the key to induce a broad neutralizing response. 
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 The goal of this thesis was to gain a better understanding of why CD4 usage is an 

invariant feature of primate lentiviruses. Through the development of a true CD4-

independent SIV, we have found that such a virus is capable of robust acute in vivo 

replication while sparing CD4+ T cells. However, the virus ultimately succumbs to host 

control, likely as the result of increased Env neutralization sensitivity, a consequence of 

CD4-independent trimer conformations. Thus, our work indicates that the primary roles 

for CD4 engagement in primate lentiviral infection are 1) the ability to adopt 

conformations to shield vulnerable epitopes and 2) to drive pathogenesis by depleting 

CD4+ T cells and disabling the adaptive immune system. 
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